@incollection{AST_2011__339__371_0,
author = {Totaro, Burt},
title = {The {ACC} conjecture for log canonical thresholds [after de {Fernex,} {Ein,} {Musta\c{t}\u{a},} {Koll\'ar]}},
booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026},
series = {Ast\'erisque},
note = {talk:1025},
pages = {371--385},
year = {2011},
publisher = {Soci\'et\'e math\'ematique de France},
number = {339},
mrnumber = {2906361},
zbl = {1356.14005},
language = {en},
url = {https://www.numdam.org/item/AST_2011__339__371_0/}
}
TY - CHAP AU - Totaro, Burt TI - The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1025 PY - 2011 SP - 371 EP - 385 IS - 339 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2011__339__371_0/ LA - en ID - AST_2011__339__371_0 ER -
%0 Book Section %A Totaro, Burt %T The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1025 %D 2011 %P 371-385 %N 339 %I Société mathématique de France %U https://www.numdam.org/item/AST_2011__339__371_0/ %G en %F AST_2011__339__371_0
Totaro, Burt. The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1025, 15 p.. https://www.numdam.org/item/AST_2011__339__371_0/
[1] - "Two two-dimensional terminations", Duke Math. J. 69 (1993), p. 527-545. | MR | Zbl | DOI
[2] , "Boundedness and for Log Surfaces", Internat. J. Math. 5 (1994), p. 779-810. | MR | Zbl | DOI
[3] , & - Singularities of differentiate maps. Vol. 77, Monographs in Math., vol. 82, Birkhäuser, 1985. | MR
[4] - "Resolution of singularities and division of distributions", Comm. Pure Appl. Math. 23 (1970), p. 145-150. | MR | Zbl | DOI
[5] - "Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients", Funkcional. Anal, i Priložen. 5 (1971), p. 1-16; | MR | Zbl
- "Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients", translation in Funct. Anal. Appl. 5 (1971), p. 89-101. | Zbl | MR | DOI
[6] - "Ascending chain condition for log canonical thresholds and termination of log flips", Duke Math. J. 136 (2007), p. 173-180. | MR | Zbl | DOI
[7] , "On existence of log minimal models", Compos. Math. 146 (2010), p. 919-928. | MR | Zbl | DOI
[8] , "On existence of log minimal models II", to appear in J. reine angew. Math. | MR | Zbl
[9] , , & - "Existence of minimal models for varieties of log general type", J. Amer. Math. Soc. 23 (2010), p. 405-468. | MR | Zbl | DOI
[10] & - "Mld's vs thresholds and flips", J. reine angew. Math. 638 (2010), p. 209-234. | MR | Zbl
[11] & - "Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds", Ann. Sci. École Norm. Sup. 34 (2001), p. 525-556. | MR | Zbl | EuDML | Numdam | DOI
[12] , & - "Bounds for log canonical thresholds with applications to birational rigidity", Math. Res. Lett. 10 (2003), p. 219-236. | MR | Zbl | DOI
[13] , & , "Shokurov's ACC conjecture for log canonical thresholds on smooth varieties", Duke Math. J. 152 (2010), p. 93-114. | MR | Zbl | DOI
[14] & - "Limits of log canonical thresholds", Ann. Sci. Éc. Norm. Supér. 42 (2009), p. 491-515. | MR | Zbl | EuDML | Numdam | DOI
[15] - "Resolution of singularities of an algebraic variety over a field of characteristic zero. I", Ann. of Math. (2) 79 (1964), p. 109-203 . | MR | Zbl | DOI
- "Resolution of singularities of an algebraic variety over a field of characteristic zero. II", Ann. of Math. (2) 79 (1964), p. 205-326. | Zbl | MR | DOI
[16] - "Singularities of pairs", in Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 221-287. | MR | Zbl | DOI
[17] , Lectures on resolution of singularities, Annals of Math. Studies, vol. 166, Princeton Univ. Press, 2007. | MR | Zbl
[18] , "Which powers of a holomorphic function are integrable?", preprint arXiv:0805.0756.
[19] , & - Rational and nearly rational varieties, Cambridge Studies in Advanced Math., vol. 92, Cambridge Univ. Press, 2004. | MR | Zbl
[20] - "On log canonical thresholds of surfaces in ", Tokyo J. Math. 22 (1999), p. 245-251. | MR | Zbl | DOI
[21] - Positivity in algebraic geometry II, Springer, 2004. | MR | Zbl | DOI
[22] & - "Threefold thresholds", Manuscripta Math. 114 (2004), p. 281-304. | MR | Zbl | DOI
[23] - "Problems about Fano varieties", in Birational Geometry of Algebraic Varieties: Open Problems. The XXIIIrd International Symposium, Division of Mathematics, The Taniguchi Foundation, 1988, p. 30-32.
[24] , "Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips", Tr. Mat. Inst. Steklova 246 (2004), p. 328-351 | MR | Zbl
, "Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips", translation in Proc. Steklov Inst. Math. 246 (2004) p. 315-336. | MR | Zbl
[25] - "Desingularization of quasi-excellent schemes in characteristic zero", Adv. Math. 219 (2008), p. 488-522. | MR | Zbl | DOI
[26] - "Newton polyhedra and estimates of oscillatory integrals", Funkcional. Anal, i Prilozen. 10 (1976), p. 13-38 | MR
- "Newton polyhedra and estimates of oscillatory integrals", translation in Funct. Anal. Appl. 18 (1976) p. 175-196. | MR | Zbl







