@book{AST_2011__337__R1_0,
author = {Bunke, Ulrich and Schick, Thomas and Spitzweck, Markus},
title = {Periodic twisted cohomology and $T$-duality},
series = {Ast\'erisque},
year = {2011},
publisher = {Soci\'et\'e math\'ematique de France},
number = {337},
mrnumber = {2797285},
zbl = {1245.55004},
language = {en},
url = {https://www.numdam.org/item/AST_2011__337__R1_0/}
}
Bunke, Ulrich; Schick, Thomas; Spitzweck, Markus. Periodic twisted cohomology and $T$-duality. Astérisque, no. 337 (2011), 140 p. https://www.numdam.org/item/AST_2011__337__R1_0/
[1] & - "Twisted -theory", Ukr. Mat. Visn. 1 (2004), p. 287-330. | MR | Zbl
[2] - "Sheafifiable homotopy model categories", Math. Proc. Cambridge Philos. Soc. 129 (2000), p. 447-475. | MR | Zbl | DOI
[3] , , , & - "Twisted -theory and -theory of bundle gerbes", Comm. Math. Phys. 228 (2002), p. 17-45. | MR | Zbl | DOI
[4] , & - "-duality: topology change from -flux", Comm. Math. Phys. 249 (2004), p. 383-415. | MR | Zbl | DOI
[5] - Sheaf theory, second ed., Graduate Texts in Math., vol. 170, Springer, 1997. | MR | Zbl | DOI
[6] , & - "The topology of -duality for -bundles", Rev. Math. Phys. 18 (2006), p. 1103-1154. | MR | Zbl | DOI
[7] & - "On the topology of -duality", Rev. Math. Phys. 17 (2005), p. 77-112. | MR | Zbl | DOI
[8] & , "-duality for non-free circle actions", in Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, p. 429-466. | MR | Zbl | DOI
[9] , & - "Sheaf theory for stacks in manifolds and twisted cohomology for -gerbes", Algebr. Geom. Topol. 7 (2007), p. 1007-1062. | MR | Zbl | DOI
[10] , & , "Inertia and delocalized twisted cohomology", Homology, Homotopy Appl. 10 (2008), p. 129-180. | MR | Zbl | DOI
[11] , , & - "Duality for topological abelian group stacks and -duality", in -theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich. 2008, p. 227-347. | MR | Zbl | DOI
[12] - Grothendieck duality and base change, Lecture Notes in Math., vol. 1750, Springer, 2000. | MR | Zbl
[13] - "Cohomologie à supports propres", in Théorie des topos et cohomologie étale des schémas. Tome 3 (M. Artin, A. Grothendieck & J.-L. Verdier, eds.), Lecture Notes in Math., vol. 305, Springer, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA4), p. 250-480. | Zbl | DOI
[14] - "Notes on differentiable stacks", in Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, 2005, p. 1-32. | MR | Zbl
[15] - Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., 1999. | MR | Zbl
[16] ,"Model category structures on chain complexes of sheaves", Trans. Amer. Math. Soc. 353 (2001), p. 2441-2457. | MR | Zbl | DOI
[17] & - Sheaves on manifolds, Grund. Math. Wiss., vol. 292, Springer, 1990. | MR | Zbl
[18] & - "The six operations for sheaves on Artin stacks. I. Finite coefficients", Publ. Math. Inst. Hautes Études Sci. 107 (2008), p. 109-168. | MR | Zbl | EuDML | Numdam | DOI
[19] & - "Chern character in twisted -theory: equivariant and holomorphic cases", Comm. Math. Phys. 236 (2003), p. 161-186. | MR | Zbl | DOI
[20] - Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. | MR | Zbl
[21] - Triangulated categories, Annals of Math. Studies, vol. 148, Princeton Univ. Press, 2001. | MR | Zbl
[22] - "Foundations of topological stacks I", preprint arXivrmath. AG/0503247. | Zbl
[23] - "Sheaves on Artin stacks", J. reine angew. Math. 603 (2007), p. 55-112. | MR | Zbl
[24] - "Topological -duality and Kaluza-Klein monopoles", Adv. Theor. Math. Phys. 12 (2008), p. 185-215. | MR | Zbl | DOI
[25] - Introduction to étale cohomology, Universitext, Springer, 1994. | MR | Zbl | DOI
[26] - Dualité dans la cohomologie des espaces localement compacts, Séminaire Bourbaki, exp. n° 300, Soc. Math. France, 1995. | MR | Zbl | EuDML | Numdam






