@incollection{AST_2010__332__405_0,
author = {Maillot, Sylvain},
title = {Vari\'et\'es hyperboliques de petit volume [d'apr\`es {D.} {Gabai,} {R.} {Meyerhoff,} {P.} {Milley,} ...]},
booktitle = {S\'eminaire Bourbaki : volume 2008/2009 expos\'es 997-1011 - Avec table par noms d'auteurs de 1848/49 \`a 2008/09},
series = {Ast\'erisque},
note = {talk:1011},
pages = {405--417},
year = {2010},
publisher = {Soci\'et\'e math\'ematique de France},
number = {332},
zbl = {1208.57001},
language = {fr},
url = {https://www.numdam.org/item/AST_2010__332__405_0/}
}
TY - CHAP AU - Maillot, Sylvain TI - Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...] BT - Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 AU - Collectif T3 - Astérisque N1 - talk:1011 PY - 2010 SP - 405 EP - 417 IS - 332 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2010__332__405_0/ LA - fr ID - AST_2010__332__405_0 ER -
%0 Book Section %A Maillot, Sylvain %T Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...] %B Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 %A Collectif %S Astérisque %Z talk:1011 %D 2010 %P 405-417 %N 332 %I Société mathématique de France %U https://www.numdam.org/item/AST_2010__332__405_0/ %G fr %F AST_2010__332__405_0
Maillot, Sylvain. Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...], dans Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09, Astérisque, no. 332 (2010), Exposé no. 1011, 13 p.. https://www.numdam.org/item/AST_2010__332__405_0/
[1] - The noncompact hyperbolic -manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), p. 601-606. | Zbl
[2] - Volume change under drilling, Geom. Topol. 6 (2002), p. 905-916 (électronique). | Zbl | EuDML | DOI
[3] , & - Dehn surgery, homology and hyperbolic volume, Algebr. Geom. Topol. 6 (2006), p. 2297-2312. | Zbl | DOI
[4] , & - Lower bounds on volumes of hyperbolic Haken -manifolds, avec un appendice de N. Dunfield, J. Amer. Math. Soc. 20 (2007), p. 1053-1077(électronique). | Zbl | DOI
[5] , , - Géométrisation of -manifolds, à paraître dans Tracts of the E.M.S. | Zbl | DOI
[6] , & - Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, vol. 15, Soc. Math. France, 2003. | Zbl
[7] , & - Volume rigidity for finite volume manifolds, Amer. J. Math. 127 (2005), p. 535-550. | Zbl | DOI
[8] & - Collars in Kleinian groups, Duke Math. J. 49 (1982), p. 163-182. | Zbl | DOI
[9] - On Cheeger's inequality , in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., 1980, p. 29-77. | Zbl
[10] & - The orientable cusped hyperbolic -manifolds of minimum volume, Invent. Math. 146 (2001), p. 451-478. | Zbl | DOI
[11] & - A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), p. 165-492. | Zbl | DOI
[12] & , Erratum to [11], A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), p. 663-664. | Zbl | DOI
[13] , & - The first Betti number of the smallest closed hyperbolic -manifold, Topology 37 (1998), p. 805-849. | Zbl | DOI
[14] , & - The smallest hyperbolic -manifolds, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), p. 40-46. | Zbl | EuDML | DOI
[15] , & - Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008), p. 429-464. | Zbl | DOI
[16] , & - Volumes of tubes in hyperbolic -manifolds, J. Differential Geom. 57 (2001), p. 23-46. | Zbl | DOI
[17] , & , Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), p. 1157-1215. | Zbl | DOI
[18] , & , Mom technology and hyperbolic -manifolds, à paraître aux Proceedings of the fourth Ahlfors-Bers Colloquium. | Zbl
[19] , & , Mom technology and volumes of hyperbolic -manifolds, prépublication arXiv:math.GT/0606072. | Zbl
[20] , & - Homotopy hyperbolic -manifolds are hyperbolic, Ann. of Math. 157 (2003), p. 335-431. | Zbl | DOI
[21] - A -dimensional hyperbolic collar lemma, in Kleinian groups and related topics (Oaxtepec, 1981), Lecture Notes in Math., vol. 971, Springer, 1983, p. 31-35. | Zbl | DOI
[22] & - Inequalities for Möbius transformations and discrete groups, J. reine angew. Math. 418 (1991), p. 31-76. | Zbl | EuDML
[23] & , Precisely invariant collars and the volume of hyperbolic -folds, J. Differential Geom. 49 (1998), p. 411-435. | Zbl | DOI
[24] & , The volume of hyperbolic -folds with -torsion, , Quart. J. Math. Oxford Ser. 50 (1999), p. 1-12. | Zbl | DOI
[25] - Hyperbolic manifolds (according to Thurston and Jϕrgensen), Séminaire Bourbaki, vol. 1979/80, exposé n° 546, Lecture Notes in Math. 842 (1981), p. 40-53. | Zbl | Numdam | EuDML | DOI
[26] - L'inégalité de Penrose (d'après H. Bray, G. Huisken et T. II-manen,...), Séminaire Bourbaki, vol. 2000/01, exposé n° 883, Astérisque 282 (2002), p. 85-111. | Numdam | EuDML | Zbl
[27] - The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007), p. 208-222. | Zbl | DOI
[28] & - The FCC lattice and the cusped hyperbolic -orbifold of minimal volume, J. Lond. Math. Soc. 75 (2007), p. 677-689. | Zbl | DOI
[29] & - Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994), p. 261-274. | Zbl | EuDML | DOI
[30] & - A proof of Selberg's hypothesis, Mat. Sbornik 75 (1998), p. 163-168.
[31] - Volumes of cusped hyperbolic manifolds, Topology 37 (1998), p. 719-734. | Zbl | DOI
[32] & - The Gauss-Bonnet formula for hyperbolic manifolds of finite volume, Geom. Dedicata 84 (2001), p. 49-62. | Zbl | DOI
[33] & - Notes on Perelman's papers, Geom. Topol. 12 (2008), p. 2587-2855. | Zbl | DOI
[34] - Deformations of hyperbolic -cone-manifolds, J. Differential Geom. 49 (1998), p. 469-516. | Zbl | DOI
[35] & - Volumes of hyperbolic -manifolds. Notes on a paper of D. Gabai, R. Meyerhoff, and P. Milley ([16]), Conform. Geom. Dyn. 7 (2003), p. 34-48 (électronique). | Zbl | DOI
[36] & - Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds, Russian Math. Surveys 43 (1988), p. 3-24. | Zbl | DOI
[37] - Sphere-packing and volume in hyperbolic -space, Comment. Math. Helv. 61 (1986), p. 271-278. | Zbl | EuDML | DOI
[38] , A lower bound for the volume of hyperbolic -manifolds, Canad. J. Math. 39 (1987), p. 1038-1056. | Zbl | DOI
[39] - Minimum volume hyperbolic -manifolds, J. Topol. 2 (2009), p. 181-192. | Zbl | DOI
[40] & - Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, Amer. Math. Soc., 2007. | Zbl
[41] & - Volumes of hyperbolic three-manifolds, Topology 24 (1985), p. 307-332. | Zbl | DOI
[42] - The spectral theory of amenable actions and invariants of discrete groups, Geom. Dedicata 100 (2003), p. 187-218. | Zbl | DOI
[43] - Ricci flow with surgery on three-manifolds, prépublication arXiv:math.DG/0303109. | Zbl
[44] - Tubes in hyperbolic -manifolds, Topology Appl. 128 (2003), p. 103-122. | MR | Zbl | DOI
[45] , Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004), p. 127-144. | MR | Zbl | DOI
[46] , A universal upper bound on density of tube packings in hyperbolic space, J. Differential Geom. 72 (2006), p. 113-127. | MR | Zbl | DOI
[47] - Covolume des groupes -arithmétiques et faux plans projectifs (d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung), Séminaire Bourbaki, vol. 2007/08, exposé n° 984, Astérisque 326 (2009), p. 83-130. | MR | Zbl | Numdam
[48] - An inscribed ball for Kleinian groups, Bull. London Math. Soc. 16 (1984), p. 525-530. | MR | Zbl | DOI







