@incollection{AST_2010__331__1_0,
author = {Stevens, Glenn},
title = {Coleman's $\mathcal{L}$-invariant and families of modular forms},
booktitle = {Repr\'esentations $p$-adiques de groupes $p$-adiques III : m\'ethodes globales et g\'eom\'etriques},
series = {Ast\'erisque},
pages = {1--12},
year = {2010},
publisher = {Soci\'et\'e math\'ematique de France},
number = {331},
mrnumber = {2667884},
zbl = {1233.11075},
language = {en},
url = {https://www.numdam.org/item/AST_2010__331__1_0/}
}
TY - CHAP
AU - Stevens, Glenn
TI - Coleman's $\mathcal{L}$-invariant and families of modular forms
BT - Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques
AU - Collectif
T3 - Astérisque
PY - 2010
SP - 1
EP - 12
IS - 331
PB - Société mathématique de France
UR - https://www.numdam.org/item/AST_2010__331__1_0/
LA - en
ID - AST_2010__331__1_0
ER -
%0 Book Section
%A Stevens, Glenn
%T Coleman's $\mathcal{L}$-invariant and families of modular forms
%B Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques
%A Collectif
%S Astérisque
%D 2010
%P 1-12
%N 331
%I Société mathématique de France
%U https://www.numdam.org/item/AST_2010__331__1_0/
%G en
%F AST_2010__331__1_0
Stevens, Glenn. Coleman's $\mathcal{L}$-invariant and families of modular forms, dans Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques, Astérisque, no. 331 (2010), pp. 1-12. https://www.numdam.org/item/AST_2010__331__1_0/
[1] - "Reciprocity laws on curves", Compositio Math. 72 (1989), p. 205-235. | MR | Zbl | EuDML | Numdam
[2] - "A -adic Shimura isomorphism and -adic periods of modular forms", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc, 1994, p. 21-51. | MR | Zbl | DOI
[3] - "Classical and overconvergent modular forms", Invent. Math. 124 (1996), p. 215-241. | MR | Zbl | DOI
[4] - "-adic Banach spaces and families of modular forms", Invent. Math.127 (1997), p. 417-479. | Zbl | MR | DOI
[5] & - "Hidden structures on semistable curves", preprint, 2007.
[6] , & - "Numerical experiments on families of -adic modular forms", in Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc. 1998, p. 143-158. | MR | Zbl | DOI
[7] & - "Numerical solution of the -adic hypergeo-metric equation", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 53-62. | MR | Zbl | DOI
[8] - "La conjecture de Birch et Swinnerton-Dyer -adique", Astérisque 294 (2004), p. 251-319. | MR | Zbl | Numdam
[9] - "Zéros supplémentaires de fonctions -adiques de formes modulaires", in Algebra and number theory, Hindustan Book Agency, 2005, p. 193-210. | MR | Zbl | DOI
[10] - "Invariants et dérivées de valeurs propres de Frobenius", this volume. | Zbl | Numdam
[11] & - "-adic -functions and -adic periods of modular forms", Invent. Math. 111 (1993), p. 407-447. | Zbl | EuDML | DOI
[12] & "On the conjecture of Mazur, Tate, and Teitelbaum", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 183-211. | MR | Zbl | DOI
[13] , & - "Lectures at the Émile Borel center", first semester 1997.
[14] - "-adic properties of modular schemes and modular forms", in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, 1973, p. 69-190. Lecture Notes in Mathematics, Vol. 350. | MR | Zbl | DOI
[15] - "On monodromy invariants occurring in global arithmetic, and Fontaine's theory", in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc. 1994, p. 1-20. | MR | Zbl | DOI
[16] , & - "On -adic analogues of the conjectures of Birch and Swinnerton-Dyer", Invent. Math. 84 (1986), p. 1-48. | MR | Zbl | EuDML | DOI
[17] - "Lectures at the Émile Borel center", first semester 2000.
[18] - "Values of -adic -functions and a -adic Poisson kernel", Invent. Math. 101 (1990), p. 395-410. | MR | Zbl | EuDML | DOI







