@incollection{AST_2009__327__1_0,
author = {Aida, Shigeki},
title = {Semi-classical limit of the lowest eigenvalue of a {Schr\"odinger} operator on a {Wiener} space: {I.} {Unbounded} one particle {Hamiltonians}},
booktitle = {From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
series = {Ast\'erisque},
pages = {1--16},
year = {2009},
publisher = {Soci\'et\'e math\'ematique de France},
number = {327},
mrnumber = {2642349},
zbl = {1194.81092},
language = {en},
url = {https://www.numdam.org/item/AST_2009__327__1_0/}
}
TY - CHAP AU - Aida, Shigeki TI - Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians BT - From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut AU - Collectif ED - Dai Xianzhe ED - Léandre Rémi ED - Xiaonan Ma ED - Zhang Weiping T3 - Astérisque PY - 2009 SP - 1 EP - 16 IS - 327 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2009__327__1_0/ LA - en ID - AST_2009__327__1_0 ER -
%0 Book Section %A Aida, Shigeki %T Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians %B From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut %A Collectif %E Dai Xianzhe %E Léandre Rémi %E Xiaonan Ma %E Zhang Weiping %S Astérisque %D 2009 %P 1-16 %N 327 %I Société mathématique de France %U https://www.numdam.org/item/AST_2009__327__1_0/ %G en %F AST_2009__327__1_0
Aida, Shigeki. Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space: I. Unbounded one particle Hamiltonians, dans From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 1-16. https://www.numdam.org/item/AST_2009__327__1_0/
[1] - "Semiclassical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space", J. Funct. Anal. 203 (2003), p. 401-424. | MR | Zbl | DOI
[2] , "Semi-classical limit of the bottom of spectrum of a Schrödinger operator on a path space over a compact Riemannian manifold", J. Funct. Anal. 251 (2007), p. 59-121. | MR | Zbl | DOI
[3] , "Semi-classical limit of the lowest eigenvalue of a Schrödinger operator on a Wiener space. II. -model on a finite volume", J. Funct. Anal. 256 (2009), p. 3342-3367. | MR | Zbl | DOI
[4] & - "Algebras of pseudodifferential operators in given by smooth measures on Hilbert spaces", Math. Nachr. 192 (1998), p. 5-22. | MR | Zbl | DOI
[5] - "Trace formulas, a Golden-Thompson inequality and classical limit in boson Fock space", J. Funct. Anal. 136 (1996), p. 510-547. | MR | Zbl | DOI
[6] & - Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge Univ. Press, 1999. | MR | Zbl
[7] - "Logarithmic Sobolev inequalities", Amer. J. Math. 97 (1975), p. 1061-1083. | MR | Zbl | DOI
[8] - Semiclassical analysis, Witten Laplacians, and statistical mechanics, Series in Partial Differential Equations and Applications, vol. 1, World Scientific Publishing Co. Inc., 2002. | MR | Zbl | DOI
[9] & - Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, Lecture Notes in Math., vol. 1862, Springer, 2005. | MR | Zbl
[10] - "Stochastic Wess-Zumino-Witten model over a symplectic manifold", J. Geom. Phys. 21 (1997), p. 307-336. | MR | Zbl | DOI
[11] , "Cover of the Brownian bridge and stochastic symplectic action", Rev. Math. Phys. 12 (2000), p. 91-137. | MR | Zbl | DOI
[12] - The Euclidean (quantum) field theory, Princeton Univ. Press, 1974, Princeton Series in Physics. | MR | Zbl
[13] , "Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions", Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), p. 295-308. | MR | Zbl | EuDML | Numdam
[14] & - "Hypercontractive semigroups and two dimensional self-coupled Bose fields", J. Functional Analysis 9 (1972), p. 121-180. | MR | Zbl | DOI






