@incollection{AST_2008__321__139_0,
author = {Chen, Xiuxiong and Tang, Yudong},
title = {Test configuration and geodesic rays},
booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (I) : Volume en l'honneur de Jean Pierre Bourguignon},
editor = {Hijazi Oussama},
series = {Ast\'erisque},
pages = {139--167},
year = {2008},
publisher = {Soci\'et\'e math\'ematique de France},
number = {321},
mrnumber = {2521647},
zbl = {1181.53058},
language = {en},
url = {https://www.numdam.org/item/AST_2008__321__139_0/}
}
TY - CHAP AU - Chen, Xiuxiong AU - Tang, Yudong TI - Test configuration and geodesic rays BT - Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 139 EP - 167 IS - 321 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2008__321__139_0/ LA - en ID - AST_2008__321__139_0 ER -
%0 Book Section %A Chen, Xiuxiong %A Tang, Yudong %T Test configuration and geodesic rays %B Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 139-167 %N 321 %I Société mathématique de France %U https://www.numdam.org/item/AST_2008__321__139_0/ %G en %F AST_2008__321__139_0
Chen, Xiuxiong; Tang, Yudong. Test configuration and geodesic rays, dans Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 139-167. https://www.numdam.org/item/AST_2008__321__139_0/
[1] - "Kähler geometry of toric varieties and extremal metrics", Internat. J. Math. 9 (1998), p. 641-651. | MR | Zbl | DOI
[2] , , & - "Hamiltonian -forms in Kähler geometry. III. Extremal metrics and stability", Invent. Math. 173 (2008), p. 547-601. | MR | Zbl | DOI
[3] & - "Infinite geodesic rays in the space of Kähler potentials", Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), p. 617-630. | MR | Zbl | Numdam | EuDML
[4] & - "The Dirichlet problem for a complex Monge-Ampère equation", Invent. Math. 37 (1976), p. 1-44. | MR | Zbl | EuDML | DOI
[5] - "Extremal Kähler metrics", in Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, 1982, p. 259-290. | MR | Zbl
[6] , "Extremal Kähler metrics. II", in Differential geometry and complex analysis, Springer, 1985, p. 95-114. | MR | Zbl | DOI
[7] & - "The space of Kähler metrics. II", J. Differential Geom. 61 (2002), p. 173-193. | MR | Zbl | DOI
[8] - "The space of Kähler metrics", J. Differential Geom. 56 (2000), p. 189-234. | MR | Zbl | DOI
[9] , "Space of Kähler metrics. III — On the lower bound of the Calabi energy and geodesic distance", Invent. math. (2008), DOI: 10.1007/s00222-008-0153-7. | MR | Zbl
[10] & - "Geometry of Kähler metrics and foliations by holomorphic discs", Publ. Math. Inst. Hautes Études Sci. 107 (2008), p. 1-107. | MR | Zbl | EuDML | Numdam | DOI
[11] & - "Kähler-Einstein metrics and the generalized Futaki invariant", Invent. Math. 110 (1992), p. 315-335. | MR | Zbl | EuDML | DOI
[12] - "Symmetric spaces, Kähler geometry and Hamiltonian dynamics", in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., 1999, p. 13-33. | MR | Zbl
[13] , "Scalar curvature and projective embeddings. I", J. Differential Geom. 59 (2001), p. 479-522. | MR | Zbl | DOI
[14] , "Holomorphic discs and the complex Monge-Ampere equation", J. Symplectic Geom. 1 (2002), p. 171-196. | MR | Zbl | DOI
[15] , "Scalar curvature and stability of toric varieties", J. Differential Geom. 62 (2002), p. 289-349. | MR | Zbl | DOI
[16] , "Lower bounds on the Calabi functional", J. Differential Geom. 70 (2005), p. 453-472. | MR | Zbl | DOI
[17] - "An obstruction to the existence of Einstein Kähler metrics", Invent. Math. 73 (1983), p. 437-443. | MR | Zbl | EuDML | DOI
[18] - "The Dirichlet problem for complex Monge-Ampere equations and regularity of the pluri-complex Green function", Comm. Anal. Geom. 6 (1998), p. 687-703. | MR | Zbl | DOI
[19] - "A remark on extremal Kähler metrics", J. Differential Geom. 21 (1985), p. 73-77. | MR | Zbl | DOI
[20] & - "The log term of the Szegö kernel", Duke Math. J. 125 (2004), p. 351-387. | MR | Zbl | DOI
[21] - "Some symplectic geometry on compact Kähler manifolds. I", Osaka J. Math. 24 (1987), p. 227-252. | MR | Zbl
[22] , "Stability of extremal Kähler manifolds", Osaka J. Math. 41 (2004), p. 563-582. | MR | Zbl
[23] & - "Analysis of geometric stability", Int. Math. Res. Not. 48 (2004), p. 2555-2591. | MR | Zbl | DOI
[24] & - "Stability, energy functional, and Kähler-Einstein metrics", Comm. Anal. Geom. 11 (2003), p. 565-597. | MR | Zbl | DOI
[25] & , "The Monge-Ampère operator and geodesies in the space of Kähler potentials", Invent. Math. 166 (2006), p. 125-149. | MR | Zbl | DOI
[26] & , "Test configurations for -stability and geodesic rays", J. Symplectic Geom. 5 (2007), p. 221-247. | MR | Zbl | DOI
[27] & , "On the regularity of geodesic rays associated to test configurations", preprint arXiv:0707.3956.
[28] & - "A study of the Hilbert-Mumford criterion for the stability of projective varieties", J. Algebraic Geom. 16 (2007), p. 201-255. | MR | Zbl | DOI
[29] - "Complex Monge-Ampère and symplectic manifolds", Amer. J. Math. 114 (1992), p. 495-550. | MR | Zbl | DOI
[30] , "The homogeneous complex Monge-Ampère equation and the infinite-dimensional versions of classic symmetric spaces", in The Gelfand Mathematical Seminars, 1993-1995, Gelfand Math. Sem., Birkhäuser, 1996, p. 225-242. | MR | Zbl | DOI
[31] & - "Bergman metrics and geodesics in the space of Kähler metrics on toric varieties", preprint arXiv:0707.3082. | MR | Zbl | DOI
[32] - "Extremal metrics and -stability", Bull. Lond. Math. Soc. 39 (2007), p. 76-84. | MR | Zbl | DOI
[33] - "On a set of polarized Kähler metrics on algebraic manifolds", J. Differential Geom. 32 (1990), p. 99-130. | MR | Zbl | DOI
[34] , "Kähler-Einstein metrics with positive scalar curvature", Invent. Math. 130 (1997), p. 1-37. | MR | Zbl | DOI
[35] - "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I", Comm. Pure Appl. Math. 31 (1978), p. 339-411. | MR | Zbl | DOI
[36] - "Szegő kernels and a theorem of Tian", Internat. Math. Res. Notices 6 (1998), p. 317-331. | MR | Zbl | DOI
[37] & - "A note on the -stability on toric manifolds", preprint arXiv:0706.0505. | Zbl







