@incollection{AST_2008__317__345_0,
author = {Carayol, Henri},
title = {La conjecture de {Sato-Tate} [d'apr\`es {Clozel,} {Harris,} {Shepherd-Barron,} {Taylor]}},
booktitle = {S\'eminaire Bourbaki - Volume 2006/2007 - Expos\'es 967-981},
series = {Ast\'erisque},
note = {talk:977},
pages = {345--391},
year = {2008},
publisher = {Soci\'et\'e math\'ematique de France},
number = {317},
mrnumber = {2487739},
zbl = {1230.11073},
language = {fr},
url = {https://www.numdam.org/item/AST_2008__317__345_0/}
}
TY - CHAP AU - Carayol, Henri TI - La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor] BT - Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 AU - Collectif T3 - Astérisque N1 - talk:977 PY - 2008 SP - 345 EP - 391 IS - 317 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2008__317__345_0/ LA - fr ID - AST_2008__317__345_0 ER -
%0 Book Section %A Carayol, Henri %T La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor] %B Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 %A Collectif %S Astérisque %Z talk:977 %D 2008 %P 345-391 %N 317 %I Société mathématique de France %U https://www.numdam.org/item/AST_2008__317__345_0/ %G fr %F AST_2008__317__345_0
Carayol, Henri. La conjecture de Sato-Tate [d'après Clozel, Harris, Shepherd-Barron, Taylor], dans Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Exposé no. 977, 47 p.. https://www.numdam.org/item/AST_2008__317__345_0/
[1] & - Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, 1989. | MR | Zbl
[2] & - Monodromy for the hypergeometric function , Invent. Math. 95 (1989), p. 325-354. | MR | Zbl | EuDML | DOI
[3] - Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in -adic monodromy and the Birch and Swinnerton- Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., 1994, p. 213-237. | MR | Zbl | DOI
[4] , Preuve de la conjecture de Langlands locale pour : travaux de Harris-Taylor et Henniart, Séminaire Bourbaki, vol. 1998/99, exp. n° 857, Astérisque 266 (2000), p. 191-243. | MR | Zbl | EuDML | Numdam
[5] - The Sato-Tate conjecture, prépublication. | Zbl
[6] , Représentations galoisiennes associées aux représentations automorphes autoduales de , Publ. Math. I.H.É.S. 73 (1991), p. 97-145. | MR | Zbl | EuDML | Numdam | DOI
[7] , On the cohomology of Kottwitz's arithmetic varieties, Duke Math. J. 72 (1993), p. 757-795. | MR | Zbl | DOI
[8] , & - Automorphy for some -adic lifts of automorphic mod Galois representations, prépublication. | Zbl | Numdam
[9] - The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), p. 379-391. | MR | Zbl | DOI
[10] - Rational elliptic curves are modular (after Breuil, Conrad, Diamond and Taylor), Séminaire Bourbaki, vol. 1999/2000, exp. n° 871, Astérisque 276 (2002), p. 161-188. | MR | Zbl | EuDML | Numdam
[11] & - Construction de représentations -adiques, Ann. Sci. École Norm. Sup. (4) 15 (1982), p. 547-608. | MR | Zbl | EuDML | Numdam | DOI
[12] - Galois deformations and arithmetic geometry of Shimura varieties, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zurich, 2006, p. 347-371. | MR | Zbl
[13] & - Systèmes de Taylor-Wiles pour , Astérisque 302 (2005), p. 177-290, Formes automorphes. II. Le cas du groupe GSp(4). | MR | Zbl | Numdam
[14] - Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications, prépublication. | Zbl | DOI
[15] , & - A family of Calabi-Yau varieties and potential automorphy, prépublication. | Zbl | DOI
[16] & - The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, 2001. | MR | Zbl
[17] & - Definable subgroups of algebraic groups over finite fields, J. reine angew. Math. 462 (1995), p. 69-91. | MR | Zbl | EuDML
[18] - On modular curves over finite fields, in Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, p. 161-202. | MR | Zbl
[19] - Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, 1990. | MR | Zbl
[20] - Moduli of flat group schemes and modularity, à paraître dans Ann. of Math. | Zbl | MR
[21] - Cohomologie, stabilisation et changement de base, Astérisque 257 (1999), p. 161. | MR | Zbl | Numdam
[22] , & - Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3) 48 (1984), p. 514-532. | MR | Zbl | DOI
[23] - Groupes de Picard et problèmes de Skolem. I, II, Ann. Sci. École Norm. Sup. (4) 22 (1989), p. 161-179, 181-194. | MR | Numdam | Zbl | EuDML | DOI
[24] - On subgroups of , Invent. Math. 88 (1987), p. 257-275. | MR | Zbl | EuDML
[25] - Travaux de Wiles (et Taylor,... ). II, Séminaire Bourbaki, vol. 1994/95, exp. n° 804, Astérisque 237 (1996), p. 333-355. | MR | Zbl | EuDML | Numdam
[26] - Abelian -adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. | MR | Zbl
[27] - On nonvanishing of -functions, Bull. Amer. Math. Soc. (N.S.) 2 (1980), p. 462-464. | MR | Zbl | DOI
[28] - Automorphy for some -adic lifts of automorphic mod Galois représentations II, prépublication. | Zbl | Numdam
[29] , Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002), p. 125-143. | MR | Zbl | DOI
[30] , On the meromorphic continuation of degree two -functions, Doc. Math. Extra Vol. (2006), p. 729-779. | MR | Zbl | EuDML
[31] & - Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), p. 553-572. | MR | Zbl | DOI
[32] & - Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), p. 467-493. | MR | Zbl | DOI
[33] - Représentations -modulaires d'un groupe réductif -adique avec , Progress in Mathematics, vol. 137, Birkhäuser, 1996. | MR | Zbl
[34] - Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), p. 443-551. | MR | Zbl | DOI







