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ARGOS SEMINAR
ON
INTERSECTIONS OF MODULAR CORRESPONDENCES

Abstract. — This volume contains the written account of the Bonn seminar on arith-
metic geometry 2003,/2004. It gives a coherent exposition of the theory of intersections
of modular correspondences. The focus of the seminar is the formula for the intersec-
tion number of arithmetic modular correspondences due to Gross and Keating. Other
topics treated are Hurwitz’s theorem on the intersection of modular correspondences
over the field of complex numbers, and the relation of the arithmetic intersection
numbers to Fourier coefficients of Siegel-Eisenstein series.

Also included is background material on one-dimensional formal groups and their
endomorphisms, and on quadratic forms over the ring of p-adic integers.

Résumé (Séminaire ARGOS sur les intersections de correspondances modulaires)

Ce volume consiste des exposés faits dans le cadre du séminaire de géométrie arith-
métique de Bonn en 2003/2004. Il donne une exposition systématique de la théo-
rie des intersections de correspondances modulaires. Le but principal est la formule
de Gross-Keating du nombre d’intersection de correspondances modulaires arithmé-
tiques. Autres sujets traités sont le théoréme de Hurwitz sur U'intersection de corres-
pondances modulaires sur le corps des nombres complexes, et la relation des nombres
d’intersection arithmétiques aux coefficients de Fourier des séries de Siegel-Eisenstein.

On a aussi inclus des rappels sur les groupes formels & un paramétre et leurs
endomorphismes, et sur les formes quadratiques sur I’anneau des entiers p-adiques.
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1. FOREWORD

1. Motivation and main results

This book is based on the notes for the APTOX(1) seminar of the winter semester
2003/2004 at the University of Bonn. Its aim was to go through the paper On the
intersection of modular correspondences by Gross and Keating [GK], and understand
it thoroughly. This subject was chosen for three reasons. First of all, it was felt that
the mathematics contained in this paper (and the papers on which Gross and Keating
base their article) is extremely interesting, and has become even more important
recently, due to the use that S. Kudla and others have made of these results. Secondly,
thanks to the elementary methods employed in the proofs of the main theorems,
the seminar provided a rapid access, even to a novice in the field, to a deep and
sophisticated topic in arithmetic algebraic geometry. Thirdly, it was felt from the
start that the literature on the subject was not easy to penetrate and that therefore
the effort made by all speakers to master this material should not be lost, and that a
written account of the seminar should be made available.

The origin of the topics treated in the seminar goes back to the 19'" century. Let
Jj = j(7) be the elliptic modular function on the upper half plane. For m > 1 let
em(4,7") € Z[j,j'] be the classical modular polynomial, defined by

(1.1) em(i(r) i) = J[ () —iAr)
AeM2(Z)
det(A)=m
mod SLo(Z)

Kronecker and Hurwitz established a number of important properties of these polyno-
mials, as for instance their factorization into irreducible factors. They also proved de-
gree formulas like

(1.2) deg fm = Z max(d,d’) ,
dd'=m

where fi,(7) = om(4,7), for m not a square.

(1) Acronym for Arithmetische Geometrie Oberseminar.
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From the point of view of the seminar, the interest in these results lies in the fact
that they can be interpreted as giving intersection numbers on the complex surface
Sc = Spec Cly, j']. Let Ty,c € Sc be the divisor defined by ¢, = 0. Then (1.2) can
be interpreted as the intersection formula

(1.3) (T Thc) = Y max(d.d) |
dd'=m

if m is not a square. Here (T,,, ¢ - Trn,,c) is defined by
(14) (T'rrn,C . Tm,g,(C) = diIl’lC (C[Jv.]/}/((pml ’ meg)

More generally, Hurwitz showed that the divisors T, ¢ and T,,, ¢ intersect properly
on Sc if and only if miyms is not a perfect square and gave an explicit expression
for the intersection number (7, ¢ - Tm,.c). This in turn leads to the famous class
number relations of Kronecker and Hurwitz.

Gross and Keating took up this classical subject by adding an arithmetic dimension
to it. Instead of usual intersection numbers they consider arithmetic intersection
numbers. Let S = SpecZ[j, j'], which we consider as an arithmetic threefold. Let T},
be the arithmetic divisor defined by ¢,, = 0. The arithmetic intersection number is
defined for any triple of positive integers mq,mso, mg by

(1.5) (T, * Tiny - Tiny) = log # Z[,f,j’]/(@nqy@my Oms)

Gross and Keating derive a criterion for when this number is finite and give in this
case an explicit expression for it (see below). This result is the main focus of the
present book. Let us state it from the point of view adopted in these notes. Let M
be the moduli space of elliptic curves over Spec Z (since we impose no level structure,
M is not a scheme, but a Deligne-Mumford stack). Put & = M Xgpecz M. For a
positive integer m, let 7, be the moduli space of isogenies of elliptic curves £ — E’
of degree m. Then 7, maps by a finite unramified morphism to M x M. From this
point of view, the intersection number above should be interpreted as

1 ~

log(p) - ———1g Ox .,

Z og(p) Z #Aut(z) & VX
p reX(IF,)

where we denote by X the triple fiber product of 7,,,, Tp,, and 7,,, over M x M.

Here the weighting factor #A_Lln(xj is due to the fact that X is a stack.

We now state the main results contained in this volume.
We denote by Sc resp. by T}, ¢ the base change of S resp. T}, to Spec C. The first
result is Hurwitz’s theorem.

Theorem 1.1. — The cycles Ty,, ¢ and Ty, ¢ intersect properly on Sc if and only
if the integer m = mimsg is not a perfect square. In this case, the intersection
Tiny ¢ X8 Tiny,c lies over the locus in Sc corresponding to pairs (E,E') of elliptic
curves with complex multiplication by orders in the imaginary-quadratic field Q(v/—m)
of discriminant > —4m. The intersection number is equal to

2
(Tml,(C : TTnz-,(C) = Z Z d-H <47n(7t> - 0

:,2t<effm d|ged(mq,ma,t)
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1. FOREWORD ix

Here H(n) denotes the Hurwitz class number (the number of SLy(Z)-equivalence
classes of positive definite binary quadratic forms over Z with determinant n).

The second result is the theorem of Gross and Keating.

Theorem 1.2. — The cycles Ty, , Tyn, and Ty, intersect properly on S if and only if
there is mo positive definite binary quadratic form over Z which represents the three
integers mi,mo, ms. In this case the intersection T, Xg Tim, X s T, lies over the
locus in S corresponding to pairs (E,E’) of elliptic curves which are supersingular
in some characteristic p with p < 4mymams. The arithmetic intersection number is
equal to

(Tml . ng . Tm,;;) - Z n(p) Ing 3

p<4dmimams

where

1
n(p) == - ¥e? . g
=33 (II#@)- i@
{#£p

Here the sum is the taken over all positive definite integral ternary quadratic forms
@ with diagonal (my,m2, m3) which are isotropic over Q, for all £ # p. Furthermore
A= %det Q and [¢(Q) is a normalized representation density of @) by the Z,-lattice
Ms(Z¢) with its norm form. Finally, o, (Q) is the length of a certain local deformation
space. Namely, one considers the universal deformation space of a triple of isogenies
of formal groups of dimension 1 and height 2 over F,. Here the passage from a global
problem involving elliptic curves to a local problem on formal groups is provided
by the Serre-Tate theorem. In [GK], Gross and Keating give completely explicit
expressions for the factors 5,(Q) and a,(Q), comp. Chapters 5 and 13. They express
these quantities in terms of new invariants of ternary quadratic forms over Z, which
are defined by them for this purpose (the Gross-Keating invariant in (Z>o)? and the
Gross-Keating epsilon factor in {£1}). This is especially striking in the cases when
¢ = 2 resp. p = 2, in the other cases these invariants can be expressed in terms of
classical quantities.

The invariant «,(Q) is probably the most interesting ingredient in the formula
above, and we now give a precise definition.

Let G be a formal group of dimension 1 and height 2 over F,,. Let W = W ([F,)
be the ring of Witt vectors. The universal deformation of the pairs (G,G) is then
(I, T") over the formal scheme S = Spf W([t,t']]. If now f1, f2, f3 : G — G are three
endomorphisms # 0, we let I; € W/[[t,¢]] for i = 1,2,3 be the minimum ideal such
that f; lifts to a homomorphism fi : T — T (mod I;). Then I; defines a divisor ’E
on S. Consider

(1.6) (T, - Ty - T3) = lengthy, W[t t']])/(I + Iy + I3)

On End(G) we have the usual quadratic form Nm with values in Z,, (the norm form,
after identifying End(G) with the maximal order in the quaternion division algebra
over Q). It turns out that (1.6) only depends on the quadratic form Q(f1, fo, f3) :

SOCIETE MATHEMATIQUE DE FRANCE 2007



x 1. FOREWORD

(x,y,2) — Nm(zfi + yf2 + 2f3), and even only on its GL3(Z,)-equivalence class. We
then set

(1.7) Q) =(T- % Ts) |

for any triple fi, f2, f3 with Q(f1, f2, f3) = Q. The formula for (@) in terms of the
Gross-Keating invariant (ay,az,a3) € (Z>0)® with a1 < az < ag is as follows. We
note that for p # 2, in which case @ can be diagonalized, the integers ai, as, a3 are
simply the p-adic valuations of the diagonal entries.

a;—1 (a1+a2—2)/2
ap(Q) = Z (i +1)(a1 + az + az — 3i)p" + Z (a1 +1)(2a; + ap + az — 4i)p
=0 i=aq
} 1 .
+(11;— (as —ag + l)p(“1+“2)/2, if a1 = az (mod 2)
a;—1 ‘ (a1+a2—1)/2
ap(Q) = Y (i+1)(ar+as+as—3i)p'+ > (a1 +1)(2a1 +az +az — 4i)p’,
1=0 i:al

if a1 # az (mod 2)

The above results are the main focus of these notes. In the last chapter we reformu-
late Theorem 1.2 as a relation between the arithmetic intersection numbers and the
Fourier coefficients of special values of derivatives of Siegel Eisenstein series, along
the lines sketched in the introduction to [GK]. The idea that this can be done is
attributed there to S. Kudla and D. Zagier; in the intervening years Kudla and oth-
ers have gone a long way towards proving such relations in much greater generality
[Ku2, Ku3]. Let

det(y)?

(1.8) B(r.s) =) det(er +d)7 - S

be the classical Siegel Eisenstein series of genus 3 and weight 2 for the full modular
group. Here 7 =z + iy € H3 and s € C is a complex parameter with large real part,
and the sum is over representatives (y = % ) of the left cosets of the Siegel parabolic
in Sps(Z). Then E(r,s) has a meromorphic continuation to the entire s-plane and
vanishes at s = 0. The derivative E'(1,0) = %(7‘, 0) is a non-holomorphic modular
form of weight 2 for Sp4(Z) and has a Fourier expansion

(1.9) Ero= >  dTy-q" ,
TeSymy(Z)V

where ¢7 = exp(27i tr(T7)), for any half-integral matrix 7. It turns out that for
positive-definite T" the coefficient ¢/(T,y) = ¢/(T) is independent of y = Im(7).

Theorem 1.3. — Let my, mo, m3 be a triple of positive integers such that there is no
positive definite binary quadratic form over Z which represents m1, mo and ms. There
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1. FOREWORD xi

exists a constant k independent of my,mo, ms such that

(T, Tony - Trny) = K - > )y . 04
TESym:,(Z);O
diag(T)=(m1,m2,m3)
It should be pointed out that the left hand side in Theorem 1.3 also breaks into
geometrically defined terms indexed by quadratic forms 7" and that the identity above
holds termwise.

2. Content of this book

We now explain what is to be found in this book and what is not. In Chapter 2,
G. Vogel gives a review of classical results on modular polynomials. It is followed
by the brief Chapter 3 by U. Gortz, where a certain sum of representation numbers
is computed. In Chapter 4, U. Gortz proves the first part of Theorem 1.2, which
states under which conditions the three divisors intersect in dimension 0, and it is
explained how the formula for the intersection number follows from the results of
the later chapters. T. Wedhorn then investigates in Chapter 5 the quadratic space
obtained as the space of homomorphisms between two supersingular elliptic curves
with the degree form.

Next we come to the local theory. We have made an effort to give all the neces-
sary background on formal groups, their deformations and the deformations of their
endomorphisms. Chapter 6 by V. Meusers gives a summary of Lubin-Tate theory
for formal groups, cf. [LT1]. In Chapter 7, E. Viehmann and K. Ziegler give the
construction of the formal moduli space of formal groups, and more generally, for-
mal A-modules, following Drinfeld [D]. Chapter 8 by S. Wewers is devoted to Gross’
theory of canonical and quasi-canonical lifts, cf. [G], and in Chapter 9 V. Meuser
explains an analogous theory in the split case, expanding on a remark in [G].

Since we will be interested in lifting isogenies of elliptic curves rather than just
the curves themselves, we need to understand how endomorphisms of formal groups
can be lifted. This was analyzed in much detail by Keating, see [K2] (which is
based on Keating’s unpublished Harvard thesis [K1]). This theory is presented here
in Chapter 10 by E. Viehmann and Chapter 11 by I. Vollaard. Another ingredient
we need is the theory of quadratic forms over Zy, including the delicate case ¢ = 2
treated in section 4 of [GK], comp. also the account of Yang [Y1]. This is dealt with
in Chapter 12 by I. Bouw. We come back to the theory of quadratic forms, namely
to the computation of certain representation densities, in T. Wedhorn’s Chapter 15,
where, however, we have merely quoted from Kitaoka [Ki] and Katsurada [Ka| the
facts that we use.

We then come to the investigation of the invariants o, (Q), and to the proof of the
explicit formula for them. Here the case p = 2 causes additional complications. We
provide two different proofs of the formula in that case — one which relies on laborious
explicit computations (Chapter 13, by M. Rapoport), and another one which is more
conceptual (Chapter 14, by S. Wewers). We feel that both are enlightening in their
own way.

SOCIETE MATHEMATIQUE DE FRANCE 2007



xii 1. FOREWORD

Whereas we have provided a lot of background information on the ingredients of
the results in [GK], with Theorem 1.3 we were less ambitious, contenting ourselves
with references to the appropriate papers (mostly of Kudla) to calculate the Fourier
coefficients of F’(r,0), see Chapter 16 by M. Rapoport et T. Wedhorn.

3. Perspective

We believe that Gross’ theory of canonical and quasi-canonical liftings is going to
have even more applications than have been found so far. We hope that our book can
serve as a basis of future research. At the end of this introduction there is a list of
references of which we are aware, where this theory is used. The theory was invented
originally by Gross in connection with the proof of the Gross-Zagier formula. We note
that in B. Conrad’s recent account of the geometric ingredients of this proof [Co] the
theory of quasi-canonical liftings is explicitly excluded; therefore our notes may also
be viewed as a complement to Conrad’s exposition. Also, Chapter IIT of [KRY] is
based on the present notes (in loc. cit., only the intersection numbers (71 - T, - Tony)
are needed).

The main ingredient of the proof of Theorem 1.2 is the determination of the quan-
tity a,(Q). This may be viewed as a special case of the following general problem. Let
G and G’ be two p-divisible groups over IF,,. The universal deformation of (G,G’) is
then (I, T") over the formal spectrum of a power series ring R over W. Let f : G — G’
be an isogeny. The problem is to determine the minimal ideal I in R such that f lifts
to an isogeny f: I' — I (mod I ). Related to this question is the following problem:
Let I be the minimal ideal such that a given set of isogenies f1,..., fr : G — G’ lifts
to a set of isogenies fire, f'r : T — I (mod I). The problem is to determine when
1 is of finite colength in R, and if so, to determine this colength explicitly.

To the sophisticated reader, it may seem curious that old-fashioned power series
methods are used here to solve these problems in the case of p-divisible formal groups
of dimension 1 and height 2. It is natural to ask whether more recent methods, like
Grothendieck-Messing lifting theory, Cartier theory, or the theory of displays can be
used to solve this problem. Indeed, as Zink [Z] has shown, the theory of displays can
be used in some instances to prove results in this direction. However, so far these
methods have not succeeded in obtaining the full statement. In view of the fact that
the cases of finite colength in [KR1, KR2]| all reduce to the Gross-Keating problem,
it is conceivable that the special case of the general problem studied here is the only
one where a reasonable uniform answer exists. This might also explain the relative
failure of the more generally applicable methods.

4. Acknowledgements

We thank all participants of the seminar for their interest and their pertinent
questions, especially Ch. Kaiser and E. Lau. We also thank S. Kudla for his encour-
agement, for his many explanations and for his thorough reading of Chapter 16.
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NOTATION

We assemble some of the notation which is used more or less systematically through-
out the book.

For an integer m > 0, we denote by ¢,, € Z[X,Y] the modular polynomial
(see [Vg]). We write S = SpecZ[X,Y], and denote by T;,, C S the divisor asso-
ciated to ¢,,. By Sc, Timn.c etc. we denote the base change to C, and by S, 7, we
denote the corresponding Deligne-Mumford stacks (see [Go2]).

In [Mel], [VZ], [Ww1], [Me2], [Vi], [V]] dealing with the local theory, the follow-
ing situation is considered: K is a field, complete with respect to a discrete valuation
vk, with ring of integers Ok. We denote by p the maximal ideal of Ok, and by 7 a
uniformizer. The residue class field Ok /p of K is assumed to be finite, of cardinality
q, and k is an extension field of Ok /p, in fact in most cases it is an algebraic closure
of the residue class field. Furthermore, L is a quadratic extension of K, with ring of
integers O, and M is the completion of the maximal unramified extension of K (or
in some places of L). By D we denote ‘the’ quaternion division algebra over K. The
maximal order of D is denoted by Op, and II = 7p is a uniformizing element. In [R],
[Ww2] the special case where the base field is Q, is considered, and the notation is
slightly different: there K/Q, is a quadratic extension (and L denotes a quadratic
space). Also, in [Wd1] D denotes a quaternion algebra over Q.

The letters F', G, H, T usually denote formal groups (or formal Og-modules etc.).
Often, G denotes the special fiber of a deformation F'. Whereas mostly F, denotes
a quasi-canonical lifting of level r (and in particular Fy denotes the canonical lift),
see [Ww1], in [Vi] and [V1] F}, denotes the base change F' @y k[t]/t" or F@a A/7".

If Ris aring, and (L, Q) is a quadratic space over R, i.e., a free R-module L with a
quadratic form @, we associate to it the bilinear form (z,y) = Q(z +y) — Q(x) — Q(y)
and-—after fixing a basis 91, ...,1,—the matrix B = B(¥) = ((¢i,%5))i,; (in [B])
or the matrix T' = (3(¢s,v;))i; (in [R], [Wd2]). If Q" is another quadratic form,
on R™, say, then we denote by R(Q’) the representation number of Q' in L, i.e.,
the number of isometries from (R™, Q") to (L, Q); see [Vg], [Go2] and in particular
[Wd2]. To a ternary quadratic form over Z, we attach its Gross-Keating invariants
a1, az, az and ¢, see [B]. Finally, the numbers o, (Q) € Z, 8:(Q) € Z which appear
in the statement of the main theorem are defined in [R] and [Wd2], respectively.
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2. MODULAR POLYNOMIALS

by

Gunther Vogel

Abstract. — We introduce the classical modular polynomials and calculate (mod-
ulo the determination of a certain sum of representation numbers) the intersection
number of two divisors defined by modular polynomials (Hurwitz’s theorem).

Résumé (Polynémes modulaires). — On introduit les polynémes modulaires classiques
et détermine (modulo le calcul d’une certaine somme de nombres de représentations)
le nombre d’intersection de deux diviseurs définis par des polynémes modulaires (théo-
réme de Hurwitz).

We introduce modular polynomials and prove some elementary properties. This
is classical and well-known, see e.g. [L, §5]. In the second part, we compute the
intersection numbers of the divisors defined by two modular polynomials in the 2-
dimensional complex plane. This computation, due to Gross and Keating ([GK])
re-proves the class number relations of Kronecker (Corollary 2.2).

We only consider elliptic curves over C.

1. Modular Polynomials

Let m € N. Consider the elliptic curve F = C/T with I' = Z + Z7 for some 7 € H.

Theorem 1.1 ([L, §5.3,5.1]). — There are canonical bijections between the following
sets:
(i) isomorphism classes of isogenies f: Ey — E of degree m (as yroup schemes
over E),
(ii) subgroups 'y C T of index m,

2000 Mathematics Subject Classification. — 11F32, 11F03, 11G15.
Key words and phrases. — Modular polynomials, representation number of a quadratic form, class
number relations.
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2 G. VOGEL

(iil) SLo(Z)\{A € M2(Z) | det A = m}, and
(iv) {(g}) € Ma(Z)|ad=m, a>1 and 0 < b < d}.
All of these sets have o1(m) =3_,,, d elements.

Proof
(i)—(i): Set I'y := fumi(Ey). (ii)—(i): Set Ey := C/T.
(i)« (iii): Choose a basis (24) (L) of T'y with A= (20) € Ms(Z).
(iii)«=>(iv): Left multiplication by matrices from SLy(Z) corresponds to row oper-

ations. The matrices in (iv) are obviously inequivalent (the columns must be stabi-
lized). O

Now consider pairs (j, ') of j-invariants of elliptic curves E, E’ such that there is
an isogeny E — E’ of degree m. These pairs are described by the divisor of a certain
polynomial ,,:

For j,j' € C choose elliptic curves E, E’ having j-invariants j, j/, respectively. Set

om(1,3") = om(i(E), j = 11 GE) -iE));
B —E

the product is over isomorphism classes of isogenies E] — E’ of degree m. ., does
not depend on the choices made and is a polynomial of degree o1(m) in j. For elliptic
curves E, F’, the condition ¢, (j(F),j(E’)) = 0 is equivalent to the existence of an
isogeny £ — E’ of degree m.

Define ¥, (7, 7') by the same formula, but restrict the product to the isogenies which
do not factor over some multiplication-by-n map, n > 1. In the above correspondence,
these isogenies correspond to primitive matrices, i.e., matrices whose entries have no

Pm = H wrrl/n,2~

n2|\m
Obviously, ¢1(X,Y) = ¢1(X,Y) = X — Y. As we will see below, ¢,,, and v, are
polynomials; they are called modular polynomials.

common divisor. We have

Theorem 1.2 ([L, §5.2])
(1) Sﬁma/‘/}m € Z[X, Y]
(i) Ym (X, t) is irreducible over C(t).
(iii) For m > 1, we have ¥, (X,Y) = ¥ (Y, X). Consequently, on(X,Y) =
+om (Y, X) (“=7 precisely if m is a square).

Proof
(i) First notice that the coefficients k; of

wm(ij(T/)) = H (X _j(AT,» € O(C[X]

SL2(Z)\{A€ My (Z)|det A = m, A primitive}
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2. MODULAR POLYNOMIALS 3

are holomorphic in 7/ and invariant under SLy(Z). From the formula

(=) vm(X,5()) =[] (X—j(aT/d+b)) = E[d(X— m —744—...)

a,b,d

(a,b,d as in 1.1 (iv) and (3 Z) primitive, (,, := eQ“i/m) we see that the k; are mero-
morphic at infinity. Since the g-expansion of the j-function has integral coefficients,

we have
b € Zicalll ][

Now there are polynomials p; € Z[Cn, T such that k; — p;(j(q’)) lies in ¢'Z[¢n][[¢']]
and therefore, being a modular function, must vanish identically. Hence, 1, €
Z[Cm][ X, Y]

There are two operations of (Z/mZ)*: first, on matrices (¢ %) as in 1.1 (iv) by

o (g 3) = (g ‘:ib> (via (Z/dZ)* on {0,....d — 1} 2 Z,/dZ),
and the first product in () is invariant under this operation. Second, (Z/mZ)*
operates in a compatible way on Z[(,] by 0(n = (3, and since the coefficients of ¢y,
are invariant under this operation, we find that v, € Z[X,Y].

(ii) By mapping t +— j, the field of meromorphic functions on H becomes an
extension field of C(t) carrying an operation of the group SL2(Z). By the elementary
divisors theorem, it permutes the zeroes of 1,,(X,t) transitively, hence 1, (X,t) is
irreducible over C(t).

(iii) The condition ¥, (j(E),j'(F)) = 0 is equivalent to the existence of an
isogeny E — E’ of degree m which does not factor over a multiplication-by-n
map for some n > 1. This last property is also true for its dual isogeny, hence
Y (7 (E"),J(E)) = 0. For a fixed j{, the irreducible polynomial ¢, (X, j}) is therefore
a divisor of 1, (j}, X), and conversely. It follows that 1, (4,5") = £ (5, 7). If the
“—"sign is correct, 1, (¢, t) vanishes identically, so 9., (X, t) has a zero in C(t), hence
the degree of ¥, (X, t) must be 1. This is true precisely for m = 1. O

From the proof of (iii) we also see that f,(X) := ¢, (X, X) vanishes if and only if
m is a square. If m is not a square, the degree of f,,, can be read off the g-expansion
in (x): set X = j(q’), then because of a # d, the pole order of one factor is equal
to max{1, a/d}, hence the pole order of the entire product is

deg fm = Z dmax{1,a/d} = Z max{a,d}.

ad=m ad=m

One also sees that the leading coeflicient of f,, is £1.
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4 G. VOGEL

2. Intersections

We first need to fix some notation. A quadratic space (L, Q) over a ring R consists
of a free R-module L of finite rank and a quadratic form @ on L. The associated
bilinear form on L is defined by

(,y) = Qlz +y) — Qz) — Qy).
The determinant of @ is the element of R/(R*)? given by the determinant of the
matrix ((b;, b;));; for some basis {b;} of L. The diagonal of @ with respect to some
fixed basis {b;} is defined to be the n-tuple (Q(b;)); where n is the rank of L.
For a quadratic form F on R™, we define the representation number Ry (F') as the
cardinality of the set

{(f)e ™| Qeifi+ +xmfm)=Flay,...,zy) forallz € R}
= {isometries (R™, F) — (L,Q)}.

For R = Z and positive definite @, this set is finite. (For each x = ¢;, i =1,...,m,
there are only finitely many possible values of x1 f1 + - + @y fon = f3)

For a positive integer D, let H(D) be the number of SLs(Z)-equivalence classes of
positive definite binary quadratic forms over Z with determinant D (which is well-
defined as an element of Z), counting the forms equivalent to ex? + ex3 and ex? +
ex1ra + ex3 for some natural number e with multiplicities 1/2 and 1/3, respectively.
If the positive integer m is not a square, we define

G(m) = Z H(4m — t?).

teZ
t?<4am

Define Ty, := V (¢y,) C AZ.
Theorem 2.1 ([GK, 2.4]). The curves Ty, and T,,, intersect properly if and only
if m = myms is not a square. In this case, their intersection is supported on pairs
(E, E") of elliptic curves with complex multiplication by orders whose discriminants
satisfy d(E),d(E") > —4m. The intersection number is

Ty Ty = Y > d~H(4ngtQ)= > n-G(m/n?).

2t€Z d|ged(my,ma,t) njged(mi,ma)
t“<4m
Proof. — If m = mymy is a square, T,,, and T}, contain V(¢4), g = ged(m1, ma), as

a common component (note that my/g and ms/g are coprime, hence squares them-
selves). Conversely, if T},, and T,,,, do not intersect properly, they must contain some
V(1hy) as a common component, but then g = m;/ n? = msy/n3, so m = g*nind is a
square.

For a pair of elliptic curves (F,FE’) corresponding to an intersection point of
Ty, and T,,,, there are isogenies fi, fa: E — E’ of degrees m; and mag, respec-

tively. Then, o := fof; is an endomorphism of E of degree m. Since m is not a
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2. MODULAR POLYNOMIALS 5

square, £ has complex multiplication, and Z + Z« is a sublattice of End E. Hence,
its discriminant (Tra)? — 4m < 0 is divisible by d(E), so

d(E) > (Tra)? — 4m > —4m.

Similarly, considering 3 := fyifi, it follows that d(E’) > —4m.

Next, we compute the local intersection number at some point (jo, j5) € C? cor-
responding to a pair of elliptic curves (E, E’). Set up := %# Aut F| similarly for
E’. Choose 7} € H such that j(r}) = jj. Locally at 7, the map j: H — Cis a
branched covering of degree ug/, so the local intersection number in the (7, j')-plane
is the intersection number in the (j,7')-plane divided by ug.

In the (j,7')-plane, the ¢,,, decompose into factors of the form
j— (AT where A; € My(Z), det A; = m;.

Therefore, it suffices to compute the local intersection number of two such factors,
both vanishing at (jo, 74). This number is the zero order of

() J(ALT") = j(AaT")

at 7/ = 7. Since A;7} and Ap7) are SLy(Z)-equivalent, we may assume that A7) =
Aot} =: 710 and ¢o = 0. Locally at 7o,

Jj(r) =j(m) +s- (7 — 10)"# + higher order terms

for some s # 0, hence (xx) is of the form

((L]T/-i-bl alT(/)—Fbl)ub'_S(aQT/-l—bQ azTé-i—bg

wg
- - + h.o.t.
o7+ dy 1 Té + dy do do ) o

det A up det As up
gy =) (TG ow) o

locally at 7). We now claim that the two leading coefficients are different. (However,

they have the same absolute value.) Otherwise, from
( det A, )“E (det A‘Z)“E
S| —mm—mm—— =S
(c1mg + d1)? d3

C]T(/)-I—d] do
—_ =

VAL /M2

for some 2ug-th root of unity w, implying

we get

3

1mg
(%) (217'(’] +di =w-
a9

The left-hand side is imaginary-quadratic, so by our assumption that m = mymg is
not a square it follows that w = +i and ug = 2. But in this case, 7} corresponds to an
elliptic curve isogenous to E' = C/(1,1), hence 7§ € Q(i), contradicting (+*x). Hence,
the zero order of (xx) at 7} equals up.
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6 G. VOGEL

Since the product decomposition of ¢,,, contains

5— #{fi € Hom(E, E') | deg f; = m;}
QuE
factors vanishing at (jo, 7)), the local intersection number in the (7, 7’)-plane is
1 .
(Tml . Tm2)(]’0,7’(’]) = m . #{(.fl,fz) S HOIII(E, E/) ' deg fz = ml} CUR.
E
Hence, the local intersection number in the (7, j’)-plane is

1
(Tml ) Tm2)(jo’j6) = 47LEU]_:7/ . #{(‘fl’fQ) € HOIn(E?E,) l d(’gf, = m7}

Such pairs (f1, f2) correspond to representations of positive definite quadratic forms
Q(x1,x9) = deg(z1 f1 + x2 f2), hence
#{(f1, f2) € Hom(E, E') | deg f; = m;} = Z Ritom(p,5)(Q)-

Q>0
diag Q=(m1,mz2)

Therefore, the global intersection number is

Ty Ty = Y. y frneen(Q)

dupup
E,E' Q>0 EXE
ell.curves/C diag Q=(m1,m2)

Z Z Ruom(e,2)(Q) E')(Q)
Q>0 E.E dupup
diag Q=(m1,m2)

By Proposition 1.1 in [Gol], the inner sum equals
det
> d-H(= Q)
dle(Q)

In our case, Q(x1,x2) = mix? + tx1x2 + max3 for some t € Z satisfying t2 — 4m < 0
(as @ is positive definite), so the above sum is equal to

4m — t2
S ()
d|ged(my,ma,t)
Putting everything together yields
4m — t?
To To= Y 3 di(T0). =
tE/A d|ged(mi,mo,t)

t2<4m

As a corollary, we get the class number relations of Kronecker and Hurwitz:

Corollary 2.2. — If m is not a square,

G(m) = Z max{a,d}.

ad=m
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2. MODULAR POLYNOMIALS 7

Proof. — By the remarks at the end of the preceding section,
T, - Ty, = deg fr, = Z max{a,d}. O

ad=m
Actually, using the convention H(0) := {(—1) = —1/12, the above corollary is valid
for all m ([W, §116]).
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3. A SUM OF REPRESENTATION NUMBERS

by

Ulrich Gortz

Abstract. — This article contains the proof of a formula stated in the paper by
Gross and Keating on intersections of modular correspondences, for a certain sum of
representation numbers.

Résumé (Une somme de nombres de représentations). — Cet article contient la preuve
d’une formule donnée dans ’article de Gross et Keating sur les intersections de cor-
respondances modulaires, pour une certaine somme de nombres de représentations.

1. Introduction

We prove a formula for a certain sum of representation numbers, stated in the
paper of Gross and Keating [GK] without proof, which is used in [Vg] in order to
compute the intersection product of two modular divisors in Sc. Let () be a positive
definite binary quadratic form over Z, say

Qx1,22) = mle +trixo + mgxg.
The determinant of Q) is
det(Q) = 4mymeo — t3(> 0),
and its content is

e(Q) = ged(my, ma, t).

Proposition 1.1

RHom(EyE/)(Q) B
2 # Aut(E) - # Aut(E') Y d-H(det(Q)/d?).

E,E’
ell. curves /C dle(@)
2000 Mathematics Subject Classification. — 14K22.
Key words and phrases. — Elliptic curves, complex multiplication, representation densities.
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10 U. GORTZ

Our argument is inspired by Hirzebruch’s article [H], where the case m; = 1 is
treated.
Acknowledgments. — I am grateful to Gunther Vogel for a discussion of this problem,
and to Torsten Wedhorn for proof-reading.

2. Proof of the proposition

The sum on the left hand side extends over isomorphism classes of elliptic curves,
and clearly the representation number Ryom(g,p)(Q) is 0 unless £ and E’ have
complex multiplication and End(F) ® Q = End(E’) ® Q. In particular, the sum is
finite.

As in [GK], we denote by H(D), D a positive integer, the number of SLy(Z)-
equivalence classes of positive definite binary quadratic forms over Z with determinant
D, where the forms equivalent to ex? + ex3 and ex? + ex179 + ex3 for some e € Z
are counted with multiplicity 1/2 and 1/3, respectively. A quadratic form is called
primitive, if its content is 1. We denote by h(D) the number of primitive positive
definite binary quadratic forms of discriminant D if D > 4, and we set h(3) = %,
h(4) = % We can also interpret A(D) as the number of elliptic curves £ with complex
multiplication, such that the endomorphism ring End(E) (which is an order in some
imaginary quadratic number field) has discriminant — D, where each such F is counted
with multiplicity 2/# Aut(FE).

For a positive integer N we denote by o1(/N) the sum of all divisors of N. Since
clearly H(D) = Zd,d2\Dh(D/d2>7 we can then rewrite the right hand side of the
formula as

> oulged(my, ma, t, d))h(det(Q)/d?).
d,d?| det(Q)

Fix an elliptic curve E with complex multiplication. We use the following notation:

Write E = C/Z @ Zt with 7 € H, and let «, 3, € Z, such that ar? + 37+~ =0,
ged(a, B,7) =1, a > 0 (once 7 is fixed, «, § and v are uniquely determined by these
conditions).

If there exists an E', such that Ryom(p,p)(Q) # 0, then there exists a natural
number d with

(2.1) dmyimy — t2 = det(Q) = d*(4ay — 3?).

Indeed, by assumption there exist f; € Hom(FE, E’), i = 1,2, such that deg(f;) = m;
and deg(f1 + fa) — deg(f1) — deg(f2) = t. Let g = f)/ o fo. If we choose lattices
A, A" such that E =2 C/A, E' = C/A’, then we get inclusions Hom(E, E’) C C,
End(E) ¢ C, and have g = myf; ' fo (although f; and f, as complex numbers
depend on the choice of A and A’, g is independent of these choices). Since g has
norm mimeo and trace t, the quadratic space generated by 1 and g inside End(E)
has determinant 4myms — t = det(Q). Since the determinant of the quadratic space
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3. A SUM OF REPRESENTATION NUMBERS 11

End(E) is 4ay — (32, this implies the existence of d as above. In particular, (2.1)

implies that t——zd—ﬁ, # VA

From now on, in addition to fixing E as above, we let ¢ € H be the (unique)
algebraic integer in H with norm Nmc /g g = mims and trace Tre/p g = t. We define

D; = {(E', f); E" an elliptic curve, f € Hom(E, E'),deg(f) = mi, milgf}/ =

Here (and similarly below) two pairs (E7, f1), (F4, f2) are called isomorphic if there
exists an isomorphism ¢: Ef — FE} such that f; o ¢ = fi. By definition of the sets
D;, the set

{(E', f1, f2); E' ell. curve, f; € Hom(E, E'),

deg(fi) = my, deg(fi+ fo) =t+mi+ma}/ =
maps bijectively to the disjoint union D1 UDs, by sending a triple (F’, f1, f2) to f1 or
f2, respectively, depending on whether mq f; 'fy € H or mo 'y Lfi € H, i. e. whether

myfitfa=gormafyt fr =g
The key point in the proof of the proposition is the following lemma.

Lemma 2.1. — The set D; can be identified with the set of matrices (4 B) € My(Z),
such that:

: N ot _ Zm, _omy

i) There exists Z| ged(my, ma,t,d) such that D = ——;—gcd(da,#,mi)’ A=,

ii) 0 < B < D, such that B satisfies a congruence of the form:

D
B = d —
b mo A

where b € Z/%Z is an element depending on Z.

Proof. — To ease the notation a little bit, we assume that ¢ = 1. Every matrix
M = (4 8)with A, B,D € Z>o, AD = m; and 0 < B < D defines an isogeny

E=C/Z¢Zr — E =C/Z&Z(Mrt), xz+— Azx.

and —up to isomorphism— all isogenies of degree m; with source F arise in this way
(see [Vg]).

We need to find out under which conditions the isogeny f corresponding to A, B, D
has the property that m;|gf. This is equivalent to

A
760 CCJTSLMT),
my

hence to

g€ DZ & ZL(AT + B),
g1 € DZ® Z(AT + B).
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12 U. GORTZ

It is not hard to check that g = # +dat and that g7 = —dy + t_QdﬂT, and we find

that the conditions above are equivalent to the following:

t —_
(2.2) Alda, A’ Qdﬂ ,
d t+d
(2.3) Z“B _ LB d D
t—dg
2.4 = — .
(2.4) 74 B dy mod D
These congruences for B are solvable if and only if
da t+dg t—dg
2.5 cd| — d| ———
(2.5) gcd(A ,D) 5 and gcd( 54 7D) d~,
respectively, and they are solvable simultaneously if and only if in addition
dry . da _ t+dp t—dg mod
ged(592, D) Aged(%, D) 2ged(%E, D) 2Aged(542, D) I
where

t—dp D)) _ sed (%, D) ged (557, D)

= lcm(gcd<d7a»D>’ng< 2A

and this condition is equivalent to

d2ary — w B mims
Aged(%, 592, D) ged(da, 52, ma)
From this we see that the above congruences for B are simultaneously solvable if and
only if
D ged (da, LdB
(2.6) gz .- Deedldo, 572 m) |
my

(note that Z € Z because A|ged(da, [’—Eﬂ,m])) and that in this case the set of
solutions is a residue class modulo %Z, as condition ii) asserts.

So for A, D > 0 with AD = m,, there exists a B such that the triple (A, B, D)
gives rise to an element of Dy if and only if A, D satisfy (2.2), (2.5) and (2.6), and
what remains to show is that these conditions are equivalent to condition i) in the
lemma.

However, given (4, B, D), we have already defined the Z in the lemma, such that
D and A have got the desired form, so we only have to show that

1) if (A, B, D) defines an element of Dy, and Z is defined as in (2.6), then Z|m,,
Zt and Z|d (since we know already that Z|my),

2) if we have Z|ged(my,ma,t,d) and define A and D as in i), then A, D € Z,
and (2.2) and (2.5) automatically hold.

ad 1) Since Z is a divisor of D, it is clear that Z|m,. Note that Z =

gcd(‘%,t;jﬂ, ), so obviously Z|da and Z]f_TM Furthermore, (2.2) implies
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3. A SUM OF REPRESENTATION NUMBERS 13

that Z|#, Z\|dv. So for one thing, Z|# and Z|#, hence Z|t and Z|dp. In
addition, we have seen that Z|da, Z|d3 and Z|dv, and since ged(a, 5,7) = 1, we
conclude that Z|d.

ad 2) Given a divisor Z of ged(mq,ma,t,d), we define D = gai(daztm—‘ld‘ﬂn—)’ A=
, T
t—dp |
5= MLZQW It is obvious that D € Z, and in order to prove that A € Z,

all we need to show is that Z| t}‘m. However, it is clear that Z|t — d3, Z|t + df3, and

from (2.1) we get that Zﬂw‘ Since t — df3 = t + d mod 2, this implies
Z|=8.

It remains to show that the conditions in (2.2) and (2.5) hold: It is clear that A|da
and A|= 48 Next, let us show that ged(42, D) t+2dﬂ . Since we have

da Z ged(da, m
gcd( ): (t_dﬁ ) ,
A’ ged(da, ==, my)

it suffices to show

t+ds t—d
ged(my, ma, t,d) ged(da, my) +2/ ged(da, 5 ﬁ,ml).

We use the following notation: for & € Z such that ged(mq,mo,t,d)|z, let & =
From (2.1) we get

t—dst+ds . o,
5 5—2[2 :mlmg—(d)“a'y,

x
ged(ma,ma,t,d)"

which implies

" t+d, - i—d,
ged(da, miy) ———;—ﬂgcd<da — ﬂ,nh).
Multiplying both sides by ged(my, ma,t,d)?, we get the desired result.
Finally, in a similar way we can show that gcd(t a5 D) )|dy. Namely, it is enough
to show

ged(my, ma, t, d) gcd(#,ml) d’ngd((la,t——;ﬂ,ml) ,

and this follows from L
t—dpt+ds s,
5 g = (d)*ary.

This concludes the proof of 2), and hence the proof of the lemma. O

mimso —

Corollary 2.2. We fix E as above, and use the same notation. Then

Z Rgom(e,21(Q)
# Aut(E")

Z #{(f1, f2) € Hom(E, E")?; deg(f;) = m;,deg(f1 + f2) =t +my + ma}
# Aut(E)

201 (ged(ma, ma, t, d)).
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14 U. GORTZ

Proof. — This follows from the lemma and the remark preceding it. O
Proof of the proposition. — Using the corollary, we can now easily prove the propo-
sition:

Rijom(r, 61 (Q)
Z # Aut(FE) - # Aut(E")

EE’

_ RHom E.E") Q)
- Z EE: # Aut Z # Aut(E")

d
d?|det(Q) disc(End(E))=— det(Q)/d>

B Z Z 201 (ged(my, ma, t,d))
y — # Aut(FE)
@2 det(Q) disc(End(E))=— det(Q)/d?

= > oulged(my, ma,t,d))h(det(Q)/d*). O

d
d?| det(Q)
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4. ARITHMETIC INTERSECTION NUMBERS

by

Ulrich Gortz

Abstract. — We define the arithmetic intersection number of three modular divisors
and interpret it from the point of view of algebraic stacks. A criterion is given when
the intersection of three modular divisors is finite. Furthermore, the final result about
the arithmetic intersection numbers, as given by Gross and Keating, is stated and
the strategy of its proof, carried out in the subsequent chapters, is explained.

Résumé (Nombres d’intersection arithmétiques). — On définit les nombres d’intersection
arithmétiques de trois diviseurs modulaires, et on donne une interprétation du point
de vue des champs algébriques. On en donne un critére pour que cette intersection soit
finie. En plus, on indique le résultat final sur les nombres d’intersection arithmétiques,
comme donné par Gross et Keating, et la stratégie de sa preuve, effectuée dans les
chapitres suivants.

1. Introduction

Let us recall some notation: Let m > 1 be an integer. In [Vg] we have defined
the modular polynomial ¢,,, € Z[j,j'] (we regard j, j' as indeterminates). We denote
by T, C SpecZlj, ;'] the associated divisor. Write S = SpecZ[j,j'], and S¢ =
Spec C[j, j'].

In this chapter, we will first prove a criterion for the intersection of three modular
divisors over Spec Z to be finite, which is analogous to the criterion of Hurwitz in the
complex situation (see [Vg]).

In the second part we will prove, following [GK] and using results of later chapters,
Gross” and Keating’s explicit formula for the arithmetic intersection number: Fix
positive integers mj, ma and ms. The arithmetic intersection number is, by definition,

(Tml : ng : ng )S = log #Z[.77 j/]/(SOml 9 (,sz 9 CPm,-; )

2000 Mathematics Subject Classification. — 11G18, 14K07, 11E08.
Key words and phrases. — Modular divisors.
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16 U. GORTZ

This number has a natural interpretation in the Arakelov theory for stacks (see below).
In the proof, we use the properties of the invariants a,(Q) and G¢(Q) which will be
established in later chapters. Altogether, this yields the proof of Theorem 1.2 in the
introduction.

Acknowledgments. — 1 am grateful to all the participants of the ARGOS seminar for
discussions and for feedback on these notes. In particular, I want to thank I. Bouw
for her comments. I also profited from discussions with S. Kudla. Finally, I thank the
anonymous referee for a number of helpful remarks.

2. Preliminaries, Notation

2.1. Quadratic forms and lattices in quadratic number fields. — There is a
dictionary between binary quadratic forms (over Z) and lattices in quadratic number
fields (see [BS] II §7.5, in particular Satz 4). The exact statement we will use is the
following.

Let d < 0 be a square-free integer. Denote by £ the set of Z-lattices in Q(v/d) up
to homothety, and denote by F the set of positive definite primitive binary quadratic
forms over Z which split in Q(\/(—i), up to proper equivalence. Then there is a bijection
N(az + By)

N(L)
where N: Q(vd) — Q denotes the norm, N(L) = ged(N(1); 1 € L\ {0}), and o, 3 is
a basis of L such that %(aﬁ —af) > 0 (here * denotes conjugation).

L—F, L+—

2.2. Stacks. — We mostly work with the coarse moduli space of (pairs of) elliptic
curves, but in a few places it is more convenient to use the language of stacks. For
the convenience of the reader, in this section we give a few references to the literature
about the results that we need. A general reference is the book [LM] by Laumon
and Moret-Bailly. See also Deligne’s and Mumford’s article [DM]. For the stacks
that we are concerned with the main reference is the book [KM] of Katz and Mazur:
although superficially the language of stacks is not used there, it is obvious that their
results can be understood as results about stacks.

We denote by M the moduli stack (over Z) of elliptic curves; this is a Deligne
Mumford stack.

We denote by 7,, the moduli space of isogenies of elliptic curves of degree m.
(In [KM], the notation [m-Isog] is used.) This is a Deligne-Mumford stack, too, and
furthermore, we have:

Proposition 2.1. — The morphism T, — M is finite and flat, and is étale over Z[%]
The morphism T,, — M x M is finite and unramified.

Proof. — The first assertion is just [KM, 6.8.1], and the second one follows immedi-
ately from the rigidity theorem, see [KM, 2.4.2]. O
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4. ARITHMETIC INTERSECTION NUMBERS 17

By relating the divisor T}, (inside the coarse moduli space) defined by the modular
polynomials ¢, to the space 7,,, we get a description of the geometric points of T,.

Lemma2.2. — Let m > 1. A geometric point of T,, corresponds to a pair (E,E’") of
elliptic curves such that there exists an isogeny E — E’ of degree m.

Proof. — 1In characteristic 0 this is basically the definition of T, and ¢,,. In positive
characteristic, we can prove this as follows: By mapping an isogeny to its source, we
get a finite flat map from 7, to the moduli stack M of elliptic curves (see [KM,
6.8.1]). In particular, 7, is flat over Z.

Now we have a map to the coarse moduli space S of pairs of elliptic curves:

F: T, — 8, (E—FE)vw— (G(E),i(E)),

and we get a diagram
Tog, ——— T,

l

im Fp, ———— im Iy,

P

[

diV(‘Prn,Qp) — diV(SD'm,Zp)

|

SQp —_— SZ,,

Since p J om(X,Y), div(em) is flat over Z,, and because im Fz, is flat over Z,, too,
we get im Fy, = div(y,,). Obviously the geometric points of im F7, correspond to
pairs (E, E') of elliptic curves such that there exists an isogeny E — E’ of degree m,
so the lemma is proved. O

We can express the arithmetic intersection number of three ‘divisors’ 7,,, in S :=
M x M in terms of the complete local rings of their ‘intersection’ X' := 7, XsTm, Xs
Tins- (Note however that Ty, Xs T, Xs T, is not the coarse moduli space of X.)

Proposition 2.3. — Let X :=T,,, X5 Ty X5 Tny. Then

(Tm1 : ng ’ ng) = lOg #Z[jvjl]/(gomu(pmz’@ms)
1 1 .
= = 1 : —— g Ox ;.
p reX (Fp)
Proof. — We may assume that the intersection T,,, N Tp,, N Ty, is finite, since

otherwise both sides are infinite. (See the next section for a precise criterion, when
this is the case.) The complete local ring of a geometric point in M x M is the universal

SOCIETE MATHEMATIQUE DE FRANCE 2007



18 U. GORTZ

deformation ring of the corresponding pair of elliptic curves, and this ring is free of

rank # Aut(E)f: Aut(E’)

over the complete local ring in the corresponding point in the
coarse moduli space. This gives us (see the remarks at the beginning of section 4 for

details) that the local contribution to the intersection number at a point (E, E') is

1 .
Tons - Tons - T ) (15501 — ] /1,
Ty Lima - Toma i) ; gzxz#Aut(E)#Aut(E') 8w Oatem e/

where the sum extends over triples of isogenies f;: E — E’, deg f; = m;, and where T
is the smallest ideal in O Mx M, (B,E"), such that fi, fa, and f3 lift to isogenies between
the universal deformations of E, E/ modulo I.

Now if a triple f1, fa, f3 corresponds to the point # € X (F,), then @MXM,(E,E’)/[ =
Ox . Another triple (f, f5, f4) yields the same point in X if and only if there are
automorphisms ¢ of E and ¢’ of E' such that f/ = ¢’ o fiop ! for i = 1,2,3.
Furthermore Autx(z) is isomorphic to the group of (¢, ¢’) € Aut(E) x Aut(E’) such
that f; = @' o fiop ! fori = 1,2,3. Hence by splitting up the sum above according to
classes of triples which map to the same point in X', we get the claimed equality. O

2.3. Notation. — We recall the following notation from [Vg]. For an elliptic curve
E, welet ug := %# Aut(E).

Furthermore, given a ring R, and a quadratic space (L, D), for a quadratic form
Q@ on R™ we define the representation number Ry (Q) as the number of isogenies
(R™, Q) — (L, D).

3. When is T;,,, N Ty, N1y, finite?

We start with a lemma which guarantees the existence of elliptic curves such that
the homomorphism module represents a given binary quadratic form.

Lemma 3.1. — Let Q be a positive definite binary quadratic form over Z. Then
there exist elliptic curves E, E' (with complex multiplication) over C such that @ =
(Hom(E, E'), deg).

Proof. — By the dictionary between quadratic forms and lattices in imaginary

quadratic number fields (see section 2), if @ is a positive definite binary quadratic

form over Z and Q' = %Q is the associated primitive form, then there exists d < 0,

an order Ry = Z + f(’)Q(ﬁ) C Q(vd) and an ideal a C Ry with Z-basis a, 3, such

that

N(az + By)
N(a)

1%

Q'(z,y)
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4. ARITHMETIC INTERSECTION NUMBERS 19

For the elliptic curves C/R, and C/a we then have
Hom(C/Rjf,C/a) ={y € C; vRy, Ca} =g,
and for v € Hom(C/Ry,,C/a),

N(v)
N(a)

degy=[a:yRp ] =r-[a:yRy]=r- =Q(v). O

It has been shown already by Hurwitz that on Sg, two divisors Tp,, and T,
intersect in dimension 0 if and only if mimg is not a square; see [Vg]. In other
words, they intersect in dimension 0 if and only if there is no unary quadratic form @
which represents both m; and my. The following proposition gives us a completely
analogous criterion for the intersection of three T},’s on S.

Proposition 3.2. — The divisors Ty,,, T, and Ty, intersect in dimension 0 if and
only if there is no positive definite binary quadratic form over Z which represents mq,
mo and ms.

In this case the support of Ty, N T, N Thy, is contained in the zero cycle of pairs
of supersingular elliptic curves in characteristic p < 4mimoms.

Proof. — First suppose that mi, mo, mg are represented by the positive definite
binary quadratic form F. Let E, E’ be elliptic curves in characteristic 0 (with complex
multiplication) such that Hom(E, E’) = F. Then (E, E') corresponds to a point of
Ty N Ty N Ty, so this intersection must have dimension > 1.

If, on the other hand, there is no positive definite binary quadratic form which
simultaneously represents my, mq and mg, then for all points (E, E’) of Ty, "Ly Ny
we must have rk Hom(E, E') > 2, thus F and F’ are supersingular, and in particular
live in positive characteristic.

Now fix a point (E, E’) € Sr, which lies in the intersection Tr,, N Thp, N Thpy. To
complete the proof of the proposition, we have to show that p < 4mymsoms. There
exist isogenies f; € Hom(FE, E’) of degree m;, i =1,2,3.

Now consider the ternary quadratic form

Q(r1, 22, 23) = deg(x1 fi + w2 fo + x3f3).

Since the matrix associated to @ is symmetric and positive definite, its determinant
is smaller or equal than the product of the diagonal entries (see [Be, ch. 8, Thm. 5]),
i.e.,

1
A= 3 det Q < 4dmyimomsg.

Note that A € Z (see [B] Lemma 1.1).

Now the proposition follows from the following lemma. O
Lemma 3.3. — With notation as above, we have
plA.
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20 U. GORTZ

Proof. — Let us first assume that p > 2.
We recall the following theorem on quadratic forms over Q,, see [Se, III Thm. 1,
IV 2.1 and IV Thm. 6], for instance:

Theorem 3.4. — If F' is an anisotropic quadratic form of rank 4 over Q,, then its
discriminant is a square, and its Hasse- Witt invariant e, is —1.

. . 4 .
Here, if we write F' = Y"._, a;2?, a; € Q,, then

gp = H(ai,aj) € {1,-1}, where (x,y) is the Hilbert symbol,
i<j
3 o
(xr,y) = (—1)0"5% <%> (%) . if = p*u,y = pPu,u,v e Zy,p#2.

Now Hom(E, E’') ® Q is isomorphic, up to scaling the form, to End(F) ® Q with
the quadratic form deg. But End(F) ® Q is the quaternion algebra over Q ramified
exactly at p and oo, and the degree form corresponds to the reduced norm (see [Wd1,
2.2]). Hence det(deg [Hom(p,p7)) is a square. We also see that the quadratic form deg
on Hom(F, E') is anisotropic over Q,, so its Hasse-Witt invariant ¢, is —1.

Since the m; are not simultaneously represented by a binary quadratic form, the
fi are linearly independent over Z. Now Hom(FE, E’) has square determinant and
represents ), so we have

Hom(E,E') @ Q = Q L (A),
where (A) denotes the unary quadratic form z +— Az?. Over Z, we can diagonalize Q:
Q(x1, 29, 23) = ax} + bal +cx3, a,b,c € Z,.

Then A = 4abc and €, = —1 implies plabe, by the formulas above.

For p = 2 the bound p < 4mymaoms holds trivially, but the stronger assertion p|A
is true in this case too. Namely, by [B] Prop. 4.7, the 2-adic valuation of A is equal to
the sum a;y + as + a3 of the Gross Keating invariants of @ (see loc. cit.). Furthermore,
since () is anisotropic, the a; cannot all be 0 (loc. cit. Lemma 5.3).

This concludes the proof of the lemma, and thus the proof of the proposition, as
well. O

We conclude this section by the following proposition which reformulates the cri-
terion we obtained above in terms of ternary quadratic forms.

Proposition 3.5. Let my, mo, mg be positive integers. The following are equivalent:
(1) There exists no positive definite integral binary quadratic form @ which repre-
sents my, ma, and mg.
(2) Every positive semi-definite half-integral symmetric matriz T with diagonal
entries my, ma, ms is non-degenerate, i.e., det T # 0.
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4. ARITHMETIC INTERSECTION NUMBERS 21

(As usual, by half-integral we mean that the entries outside the diagonal lie in %Z,
and the diagonal entries are integers. We denote the set of half-integral symmetric
n x n matrices by Sym(Z)V.)

Proof. — Given a positive semi-definite T" € Sym(Z)" with det T' = 0, we get a Q as
in (1) as follows: There exists an x € Z* such that ‘272z = 0, and we may assume
that 2 is not divisible, i.e., that it generates a direct summand in Z3. Choosing a
complement, we get a positive-semidefinite binary quadratic form which represents
the m;. It could happen that this form is degenerate, but then we can clearly find a
positive definite form which still represents all the three m;.

On the other hand, given a Q as in (1), choose x;,y;, such that Q(z;,y;) = my,
¢ =1,2,3. The matrix ( v v ;j) defines a map Z3 — Z2, and expressing the ternary
quadratic form which we get as the composition of this map with ), we obtain a
positive semi-definite half-integral symmetric matrix 7" with diagonal (my,mz,ms3)
which is obviously degenerate. O

4. A formula for the intersection number

From now on, we assume that T, , T, and T),, intersect in dimension 0. We want
to explain the final formula which we get for the intersection number, see Theorem
4.3 below. The proofs of the main steps will follow in later chapters.

We write

(Tml : ng : Tm;;)S = z n(p) 10gp7
P
with
n(p) = ng,, Zypl3, 31/ (mys Pmas Pms)
(and n(p) = 0 for p > 4mymams).

Furthermore, n(p) is the sum of the intersection multiplicities in points (E, E")
given by pairs of supersingular elliptic curves in characteristic p. Denote by j) | j (E")
their j-invariants.

Let W = W(F,) be the ring of Witt vectors of F,, let B GED e W obe lifts of
GE) 5B respectively, and let Ry be the completion of W/[j,5'] in the ideal m =
(p.j =3P, j" = j)). Then

Ro=WIj—j", i = j*).
On the other hand, if R denotes the universal deformation ring of the pair (E, E’),
then R = W([t,']], and Ry is isomorphic to the ring RAUE)IXAUWE") of invariants
under the finite group Aut(E) x Aut(E’) (cf. [KM, 8.2.3]). Since Ry is regular, R is
free over Ry (see [Ma, Theorem 23.1]) and since =+ id are the only automorphisms of

the whole universal deformation, we have rkg, R = ugup.
We denote by (E,E’) the universal pair of elliptic curves over Spf R.
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22 U. GORTZ

Lemma 4.1. — In R, the modular polynomial p,, factors as follows:

Pm = H Pm,

f: E—E' isog. of
degree m, mod +1

such that for each f, (om,r) C R is the smallest ideal I C R sucﬁ that f lifts to an
isogeny f: E — E' modulo I.

Proof. — Let f: E — E' be an isogeny of degree m. Then its deformation functor
Def s is pro-represented by a closed subscheme of Spf R (by the rigidity theorem), and
this closed subscheme is a divisor, say div(om.f), ©m,r € R. (This is proved in [KM,
(6.8)] if m is a power of p, but the proof given there works in general. If p does not
divide m, then Def is actually smooth.)

Claim. — If f and g are isogenies E — E' of degree m, then the elements ¢, 5 and
©m.g are coprime unless f = *g.

To prove the claim, suppose that f and g are given such that ¢, f and ¢,, 4 are
not coprime. Then div(¢m,,f) and div(ypm,,g) have a common component C. Now
C ® Q must have dimension 1, so End(E ®gps p C) = End(E' ®@gper C) = Z

By definition of C, we have isogenies f,g: E ®gpir C — E' ®@gper C of degree m.
Since 'f o f and ' f o g are elements in End(E ®gprr C) = Z of the same degree, we
see that f = £¢. This proves the claim.

Thus we get for the scheme-theoretic union
U Def y = div( H O, f)-
~f mod £1 f mod +1

Since

U Defs(S) = div(em)(S)
f mod £1

for all S — Spf R, we obtain that (after possibly changing one of the ¢, ;’s by a unit)

Pm = H ©m, f- O
f mod +1

Lemma4.2. — Let A be a ring, B an A-algebra, and let x1,...,x, € B. If none of
the x; is a zero-divisor, then

lgaB/(xy -+ ay) = ZIgAB/(:ci). O
i=1

We can write

(T Tong ~ Tons) = Z log(p) Z (T, = Ting = Ting ) (B, 57),
P (E,E")s.s. in char p
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4. ARITHMETIC INTERSECTION NUMBERS 23

and by applying Lemma 4.1 to ¢,,, fori = 1,2, 3, and applying lemma 4.2 successively,
we get that the local contribution in a point (E, E') is

(Tml . ng . ng)(E,E/) = IgWRO/(‘pml s Prmgs me;;)
1
= ZZZ lgWR/((thfl’(me’fQ’mes,fs)
f URUE"
fr f2 fs
1
fi,1=1,2,3 URUE!

where the sums are over isogenies f;: E — E’ of degree m;, up to £1, and where I is
the smallest ideal in R such that f1, fo and f3 lift to isogenies f;: E — E' mod I.
We write, using the notation of [R],

a(flv .f?) fS) = lgwR/I

By the theorem of Serre-Tate, this global question about elliptic curves can be
reduced to a local question about formal groups. This is the reason why we study
deformations of isogenies between formal groups in detail in the following chapters.

From [R, Theorem 1.1] we get that «(f1, fo2, f3) depends only on the Z,-
isomorphism class of the ternary quadratic form Q: (z1, z2,x3) — deg(>_ i fi). We
thus write ,(Q) instead of a(f1, f2, f3). Loc. cit. gives an explicit expression for
a,(Q) in terms of the coefficients of Q. The number of occurrences of @ in (4.1)
is %RHom( g6 (Q) (because we count the isogenies up to +1, but the representa-
tion number counts each triple (f1, f2, f3)). Furthermore, for a positive definite
ternary form Q, Ruom(p,p)(Q) = 0 unless @ is isotropic over Q for all £ # p,
and anisotropic over Q,. The reason is that Hom(E, F’) ® Q = End(¥) ® Q, and
End(E) ® Q¢ = M>(Qy) for £ # p, and End(F) ® Q, is a division algebra (see [Wd1,
2.2]). On the other hand, in the latter case there exists a pair of supersingular
elliptic curves E, E' in characteristic p, such that @ is represented by Hom(E, E')
(see [Wd1, Proposition 3.2]).

We have now

’I’L(p) _ % Z Z RHom(E,E')(Q) Olp(Q)

URUE!
(E,E') supersingular Q ERE

Further Corollary 4.4 in [Wd1] states that there are invariants 5,(Q) € Z>; which
depend only on the isomorphism class of the ternary form @ over Zy, such that

(42) Z RHOm(E,E’)(Q) _ 4H,@£(Q)

URUE
(E,E’) s.s. EYE A
L#p

The invariants §; are computed explicitly in [Wd2, Proposition 2.1]. Altogether, we
get the following theorem.
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24 U. GORTZ

Theorem 4.3. — If T, , T\,, and T}, intersect in dimension 0, then

(T * Tony - Ting)s = og #2135, 51/ (O s Pmas Pms) = Zn(p) logp
P

with

n) = 5 3 [ TT @ | opt@),

[APAN
Q LFp

where the sum runs over all positive definite ternary quadratic forms Q over Z with
diagonal (mq,ma, ms) which are isotropic over Q¢ for all £ # p.

In this way we get a very explicit formula for the intersection numbers.
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5. THE GENUS OF THE ENDOMORPHISMS OF A
SUPERSINGULAR ELLIPTIC CURVE

by

Torsten Wedhorn

Abstract. — We describe the genus of the quadratic space Hom(E’, E) of homomor-
phisms of two supersingular elliptic curves E and E’ and study the map (E’,E) —
Hom(FE', E) from the set of pairs of supersingular elliptic curves over F, to the set
of proper classes in this genus. We show that this map is surjective and determine
its fibres. In the last section we use the Minkowski-Siegel formula to express the
mean value of the representation of a ternary quadratic form in this genus by local
representation densities.

Résumé (Le genre des endomorphismes d’une courbe elliptique supersinguliére)

Nous décrivons le genre de I'espace quadratique Hom(E’, E) des homomorphismes
de deux courbes elliptiques supersingulieres E et E’ et nous étudions I'application
(E',E) — Hom(E', E) de ’ensemble des paires de courbes elliptiques supersingulieres

sur I, vers I’ensemble des classes propres dans ce genre. Dans le dernier paragraphe,
on utilise la formule de Minkowski-Siegel pour exprimer la moyenne de la repré-
sentation d’une forme quadratique ternaire dans ce genre en termes de densités de
représentation locales.

Introduction

Let p > 0 be a prime and let D be the unique quaternion division algebra with
center Q which is ramified precisely at p and at infinity. The reduced norm Nrd is
a quadratic form on D. We will study lattices and maximal orders in D. Recall
that two lattices A and A’ are said to be in the same proper class if there exists a
g € SO(D,Nrd) such that gA = A’.

We will relate the lattices and the maximal orders in D to supersingular elliptic
curves. Many of these results, although formulated somewhat differently, can already
be found in [Do] (see also [GZ]).
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26 T. WEDHORN

Fix a supersingular elliptic curve Ey over Fp set O = End(Ep). Then O is a
maximal order in the quadratic space O ®z Q, where the quadratic form is given by
the degree, and we can and will identify the rational quadratic spaces O ®z Q with D.

The first result is the following (proved in sections 2.9 and 2.15):

Theorem. — Consider isomorphism classes of pairs (E, p) where E is a supersingular

elliptic curve over F, and p: E — Eq is a quasi-isogeny.

(1) The map (E,¢) — pHom(Ey, E) induces a bijection of the set of isomorphism
classes of supersingular elliptic curves over F,, and the set of right ideal classes
of O.

(2) The map (E, ) — @End(E)¢~! induces a surjection from the set of isomorphism
classes of supersingular elliptic curves over FP to the set of conjugacy classes of
mazimal orders in D. Two supersingular elliptic curves E and E' are sent to

the same conjugacy class if and only if there exists a o € Gal(Fp/IFp) such that
E' = E©),

For all pairs (E’,F) of supersingular elliptic curves it is possible to choose
quasi-isogenies ¢: £ — FEg and ¢': F' — Ep with deg(¢) = deg(y¢’). Then
@Hom(E’, E)¢'~! is a lattice in D whose proper class is independent of the choice of
¢ and ¢’. In this way we can consider Hom(E’, E') as a proper class of lattices in D.

The second theorem describes these proper classes (see sections 3.1 and Proposi-
tion 3.2).

Theorem. — Let A be a lattice in D. Then the proper class [A] of A is the proper
class associated to Hom(E', E) if and only if A is in the same genus as O.

It follows that the map ((E, ), (E', ¢")) — @ Hom(E’, E)¢'~! induces a surjection
(E,E’) — [Hom(FE', E)] from the set of pairs of isomorphism classes of supersingu-
lar elliptic curves onto the set of proper classes of lattices in D which are locally
isomorphic to O. The next theorem describes the fibres of this map and number of
automorphisms of the quadratic space Hom(F, E’) (see Proposition 3.3 and Corol-
lary 3.5).

Theorem

(1) Two pairs (E,E") and (F,F') are sent to the same proper class if and only if
there exists a o € Gal(F,/F,) such that F = E(®) and F' = E'(%).

(2) For all (E,E')

#Auwt(E)# Awt(E"), E, E’ both defined over IFp;

#SO([HOm(E 7E)]) = {%# Allt(E)# Allt(E/), otherwise.
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5. THE GENUS OF THE ENDOMORPHISMS OF A SUPERSINGULAR ELLIPTIC CURVE 27

Now fix a positive definite ternary quadratic form @ over Z. By the theorems
above we can consider the expression

1 RHom(E’ E)(Q)
2 (EE: #Aut(E)) Z # Aut(E)# Aut(E)

(E'.E)

as the mean value of the representation of @ by the genus of End(Eg) (here E and
E’ run through all isomorphism classes of supersingular elliptic curves over Fp, and
Riom(pr,p)(Q) denotes the number of isometries Q@ — Hom(E’, E)). Hence it can be
expressed as a product of local representation densities a;(Q, End(Ep)) (see 4.3) by
the Minkowski-Siegel formula. We obtain (theorem 4.3):

Theorem. — The mean value is given by
RH()m(E" )(Q) (p - 1>2 m
Z =2 - H(ll(Q,End(EU)),
3
#Aut (E")# Aut(E) 12 p* 4

where | runs th'rough all prime numbers [.

This article is organized as follows. In the first section some definitions and results
on quadratic spaces and quaternion algebras are recalled. The second section ad-
dresses the correspondence between supersingular elliptic curves, right ideal classes,
and conjugacy classes of maximal orders. In the third section the above results on the
quadratic spaces Hom(E', E') are proved. The Minkowski-Siegel formula is applied in
the last section.

Acknowledgements. — 1 am very grateful to S. Kudla for his helpful remarks and to
M. Rapoport, T. Yang and the referee for their comments.

1. Preliminaries on quadratic spaces and quaternion algebras

1.1. In this section we recall some definitions and results on quadratic spaces.

If R is a commutative ring, a quadratic space over R is a free R-module M together
with a map @Q: M — R, such that
(a) Q(rm) =r2Q(m) for allr € R and m € M.

(b) The form bg(x,y) = Q(z +y) — Q(x) — Q(y) is R-bilinear and nondegenerate
(i.e., the R-linear map M — M™ corresponding to bg is injective).

The map @ is called the quadratic form of the quadratic space (M, Q).

Two quadratic spaces (M, Q) and (M’ Q') over R are said to be isomorphic if
there exists an R-linear isomorphism f: M — M’ such that Q'(f(m)) = Q(m) for all
m € M. We then write (M, Q) = (M, Q).

The group of automorphisms of a quadratic space will be denoted by O(M, @), the
subgroup of automorphisms g € O(M, @) with det(g) = 1 is denoted by SO(M, Q).
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28 T. WEDHORN

1.2. Inthe sequel we will only consider quadratic spaces (M, Q) over integral domains
R whose field of fractions has characteristic not equal to 2. Then we write Sym,,(R)Y
for the set of symmetric matrices n by n matrices A = (a;;) with coefficients in
Quot(R) such that a;; € R for all i and such that 2a;; € R for all 4, j. Moreover, we
denote by Bg the Quot(R)-valued bilinear form

1
Bo: Mx M — Quot(R),  (r.) — 5(Qlr +) ~ Qx) ~ Q)
Let B = (e1,...,€,) be an R-basis of M. The matrix
Sq = (Bg(ei,e;)) € Sym,, (R)”
is called the matrix associated to (M, @, B).

We denote by det(M) = det((M,Q)) the class of det(Sg) modulo (R*)?. This is
independent of the choice of B.

1.3. Very often we will consider quadratic spaces which arise as follows: Let (V, Q)
be a quadratic space over Q and let A be a Z-lattice of V' (i.e., a finitely generated
Z-submodule A such that AQ = V). If Q(A) C Z, the restriction of @ to A defines a
quadratic form on A over Z.

If [ is a finite place of Q, A; = A®zZ, is a lattice in the Q;-vector space V; = V®Q);.
Recall that to give a Z-lattice A in V' is the same as to give a Z;-lattice A; for all [
such that there exists a Z-lattice I' of V' with A; = I'; for almost all [.

Denote by Ay the ring of finite adeles of Q. An element g € GL(V ® Ay) is an
element (g;) € [[, GL(V;) where [ runs over all finite places of Q such that g;(A;) = A
for almost all [ (this condition is independent of A). Hence g = (g;) acts on the set of
lattices by setting

g(A) =V N g(A)).
l
We obtain an action of GL(V ® Ay) on the set of lattices in V' and in particular

an action of the subgroups O(V ® Ay) and SO(V ® Ay).

Definition 1.1. We say that two quadratic spaces M and M’ over Z are related if
M and M’ are isomorphic over Z; for all places [ of Q (with the convention Z., = R).

1.4. If M and M’ are related, they are of course also isomorphic over Q; for all
places [ and hence they are isomorphic over Q by the weak approximation theorem for
quadratic spaces. If we choose an isomorphism of rational quadratic spaces M ® QQ =
M' @ Q, we can consider M and M’ both as lattices in the same quadratic space V
over Q. Moreover, the fact that M and M’ are related just means that there exists a
g € O(V)(Ay) with g(M) = M’. This leads us to the following definition:

Definition 1.2. Let V' be a quadratic space over Q. We say that two lattices A and
A’ in V are related if there exists a g € O(V)(Ay) such that g(A) = A’
An O(V')(Ay)-orbit of lattices in V' is called a genus.
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5. THE GENUS OF THE ENDOMORPHISMS OF A SUPERSINGULAR ELLIPTIC CURVE 29

Lemma 1.3. — Let | be a prime number and let (M, Q) be a quadratic space over Z;.
Then there exists a reflection in O(M, Q).

Proof. — Let € M be an element such that the [-adic valuation of Q(x) is mini-
mal among the elements in M. Then an easy calculation shows that the reflection
associated to x preserves M. O

Corollary 1.4. Let V be a quadratic space over Q. Two lattices A and A" in' V are
in the same genus if and only if there exists a g € SO(V ® Af) such that g(A) = A’

Definition 1.5. — Let V be a quadratic space over Q. Two lattices A and A’ in V
are said to be in the same proper class or to be properly equivalent if there exists a
g € SO(V) such that g(A) = A'.

They are in the same class or equivalent if there exists a ¢ € O(V) such that
g(A) = A

Obviously, every genus of a lattice is the disjoint union of classes and every class is
the disjoint union of one or two proper classes. Moreover, it is well known (e.g., [Ki,
6.1.2]) that in each genus there are only finitely many proper classes.

The class of a lattice A is equal to the proper class of A if and only if there exists
a g € O(V) with det(g) = —1 such that g(A) = A, i.e., if and only if SO(A) # O(A).

1.5. We will be mostly interested in quadratic spaces which arise from quaternion
algebras: By a quaternion algebra over a field F' we mean a central simple algebra D
over F' of dimension 4. We write Trd and Nrd for the reduced trace and the reduced
norm on D, respectively, and we denote by « +— & := Trd(z) — = the canonical
involution on D.

Assume that F' is the field of fractions of Dedekind domain A (e.g., A = Z or
A =17;). Let A be some A-lattice of D. Then we set
(1.1) O(A)={deD|dANCA},
(1.2) O,(A)={deD|AdCA}.
These are orders in D. We call them the left order (resp. right order) of A. We say
that A is normal if O;(A) and O, (A) are maximal orders.

Lemma 1.6. — Let F be a field with char(F') # 2 and let D be a quaternion algebra
over F. We set

S(D) :={(d,d') € D* x D* | Nrd(d) = Nrd(d') }.
Consider the group homomorphism
a: S(D) — O(D,Nrd),
(d,d') — (6 — déd'™1).
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30 T. WEDHORN

Then we have
Im(a) = SO(D,Nrd), Ker(a) = F*
where F* is embedded diagonally in D* x D* .

Proof. — We give two proofs for this. The first is elementary: Clearly, we have
Ker(a) = F*. Let d € D be an element with Nrd(d) # 0 and denote by 74: D — D
the reflection with respect d. Then we have for § € D:

B Trd(dd)
Nrd(d)
Every element in SO(D) is a product of elements of the form 7474 as char(F) # 2.

It follows from (1.3) that for all 6 € D we have

TdTd! (5) =dd'od'd!

(1.3) 740 =0 d=—dod .

and this proves that SO(D) is contained in the image of a.

Conversely, let o: § — ddd’~! with Nrd(d) = Nrd(d’) be in the image of a. The
determinant of left or right multiplication with any element de Dis given by Nr(l((i)2
(this can be checked over an algebraic closure and for a matrix algebra this is elemen-
tary). Hence we see

det(o) = Nrd(d)? Nrd(d') 2 = 1.

The second proof is as follows. By Hilbert 90 we have H'(F,G,,) = 0 and therefore

it suffices to show that « induces an exact sequence of algebraic groups over F

1 — Gmp — S(D) - SO(D,Nrd) — 0.

We can replace F' by its algebraic closure. Then it is clear that S(D) is a connected
algebraic group of dimension 7. This implies that Im(«) must be contained in the
conected component of 1 of O(D, Nrd) which is SO(D, Nrd). Again it is obvious that
Ker(a) = G,,. It follows that dim(Im(a)) = 6 = dim(SO(D,Nrd)) which shows
Im(a) = SO(D, Nrd). |

Corollary 1.7. — Let D be a quaternion algebra over Q. And let A and A’ be Z-lattices

of D.

(1) They are in the same genus if and only if there exist d = (d;), d' = (d}) €
(D ®g Ay)* with Nrd(d;) = Nrd(d)) for all l such that dA = A'd’.

(2) They are in the same proper class if and only if there exist d, d' € D* with
Nrd(d) = Nrd(d') such that dA = N'd’.

1.6. From now on, D will denote a quaternion algebra over Q. For every place v
of Q we set D, = D ®g Q,. Then D, is a quaternion algebra over Q,. For all v
there are up to isomorphism two quaternion algebras over Q,. One is isomorphic to
the ring of matrices M>(Q,) and the other one is a quaternion division algebra. If
D, = M5(Q,) we say that D is split at v otherwise D is said to be ramified at v.
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5. THE GENUS OF THE ENDOMORPHISMS OF A SUPERSINGULAR ELLIPTIC CURVE 31

We know that D is split at almost all places v and that the number of ramified
places is even. Conversely, for every set of places S of Q with an even number of
clements there exists a quaternion algebra D over Q such that D is ramified at v if
and only if v € S.

1.7. Let [ be a prime number and let D; be a quaternion algebra over Q;. We recall
some well-known facts on maximal orders and ideals in D;:

Assume first that D; = End(V) where V is a two-dimensional Q;-vector space. For
every Zy-lattice L in V the ring

End(L) = {d € End(V) | d(L) Cc L}

is a maximal order of End(V'). Conversely, every maximal order O is of this form. As
GL(V) = D* acts transitively on the set of all lattices in V| we see that all maximal
orders of D are conjugate.

If we choose a basis for L, the Cartan decomposition can be written as

GL2(Qi) = GLo(Zy) - T - GLo(Zy)

where T consists of the diagonal matrices of the form diag(i?,1°) for a, b € Z. Using
this decomposition, an easy calculation shows that the normalizer of a maximal order
O =End(L) in D/ is given by
(1.4) Npx(0) = 120%.

A Z,-lattice A is normal (see 1.5) if and only if there exist lattices L and L' in V
such that

A =Hom(L',L)={de D;|d(L")C L}.

Conversely, Hom(L’, L) is clearly a normal lattice of End(V) for all lattices L, L' of V.
We have

Oy(Hom(L', L)) = End(L), O,(Hom(L', L)) = End(L’)
and as a left End(L)-module (resp. as a right End(L’)-module) Hom(L', L) is gener-
ated by any one element d such that d(L') = L.
1.8. Now assume that D; is a quaternion division algebra over Q;. Then there exists
a unique maximal order Op, of D;, namely
OD, = {dE D, ‘ Nrd(d) € 7y }

Moreover, Op, has a unique maximal ideal m which is a principal ideal. Every nonzero
one-sided ideal of Op, is a power of m, in particular it is a two-sided ideal.
As dOp,d~! is again a maximal order of D; for all d € D}, we see that

(1.5) Npx(Op,) = Dy
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2. Supersingular elliptic curves

2.1. From now on we fix a prime number p. We consider supersingular elliptic curves
FE over Fp- Recall that any supersingular elliptic curve is already defined over F .. For
two supersingular elliptic curves we denote by Hom(E’, F) the set of homomorphism
E’ — E which are defined over F,,. We set End(E) = Hom(F, E).

We denote by W (F,) the ring of Witt vectors of F,, and write o for the Frobenius
on W(F,).

2.2. For any prime [ # p let T}(E) be the Tate module. It is a free Z;-module of
rank 2. For [ = p we denote by T,(E) the (covariant) Dicudonné module of F. It as

a free W (FF,)-module of rank 2 with o-linear operator ® such that

PTo(E) C &(T,(E)) C T,(E)

where o is the Frobenius in W (IF,). In fact, there exists a W (F,)-basis (e, f) of T,,(E)
such that ®(e) = f and ®(f) = pe.

We denote by Hom(T,(E"), T,,(E)) the Z,-module of W (F,)-linear homomorphisms
Ty(E') — T,(FE) which commute with ®. It is easily checked that this is a free Z,-
module of rank 4. Moreover, End(T,(E)) ®z, Q, is “the” quaternion division algebra
over Q, and End(7,(F)) is its maximal order.

We set TP(E) = [[,, Ti(E), VP(E) = TP(E) @z Q, V,(E) = T,(E) @z Q and
V(E) =VP(E) x V,(E).

These are free modules of rank 2 over the rings Z? = H#p 7y, A? =7Z° ®Q, Qy,
and Ay, respectively.

2.3. We fix a supersingular elliptic curve Ey, set Op = End(Ey) and D = Op ®7 Q.
It follows from 2.2 (see also 3.1 below) that D is a quaternion division algebra over
@Q which is ramified precisely at p and oc. As Op ®z Z; is a maximal order in
D; =D ®qg Q for all primes [, Op is a maximal order in D.

The reduced norm Nrd is a positive definite quadratic form on D and the induced
homomorphism Nrd: D* — Q" is surjective.

2.4. Denote by Y? be the set of ZP-lattices in VP(Ey) and by Y, the set of W (F,)-
lattices L in V,,(Ey) such that pL C ®(L) C L. Then Y xY), describes quasi-isogenies
with target Ey as follows: Consider pairs (E, ) where E is a supersingular elliptic
curve and ¢: F — Ey a quasi-isogeny. We call two such pairs (E,¢) and (E', ¢')
equivalent if there exists a commutative diagram

E—<P>E0

.

El ——>EO‘,
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where the vertical arrows are isomorphisms. Then Y? x Y, corresponds to the set
L of equivalence classes of such pairs (E,p) as above (see [Mi, 6] for the general
description of an isogeny class of an abelian variety with endomorphisms).

The group GL(VP(E)y)) acts transitively on the elements in Y? and therefore we
have a bijection

Y? «— GL(VP(Ey))/GL(T?(Ey)).

Moreover, if we denote by Aut(V,(Ep)) the automorphisms of V,,(Ep)) which com-
mute with @, it follows from the existence of a normal form for lattices in Y, (see 2.2)
that Aut(V,(Ep)) acts transitively on Y,,. Therefore we have a bijection

Y, «—— Aut(V,(Ep))/ Aut(T,(Eyp)).

If we choose isomorphisms a;: End(T}(FEp)) = Op ®z7 for all primes [, we obtain
a bijection

(2.1) L (D@gAs)*/(Op @z L)

which is independent of the choice of the «; by the theorem of Skolem-Noether.
Explicitly this bijection is given by the associating to d = (d;) € (D ®qg Af)* the
equivalence class of the pair (E, ¢) such that T;(p)(T;(E)) = d;T;(Ep) for all primes .

2.5. Let d € (D®gAs)* and let [(E, ¢)] € L be the associated quasi-isogeny. Then

we have
deg(p) = JJ 1o Nrate)
1

where [ runs over all prime numbers.

2.6. For example, the relative Frobenius Eép ) S Eqy corresponds via the bijec-
tion (2.1) to the class of an element II in (D ®¢ Ay)* which has a uniformizing
element of Op ®z Z, as p-th component and a unit of Op ®z Z; as [-th component
for all primes [ # p.

More generally, if O is any maximal order of D, we call an element 11 = (II;); €
D &g Ay a Frobenius element in a quaternion algebra with respect to O if I1; € (O ®z
Zy)* for all I # p and II,, is a uniformizing element of Op, .

2.7. Consider the natural map

[T { isomorphism classes of }

supersingular elliptic curves over F,,
(B, @)l — E.

Using the identification (2.1), two elements d, d’ € (D®gAy)*/(Op @z Z)* have the
same image in Z if and only if there exists a § € D* = (End(Ep) ®z Q)* such that
0d = d'. Hence we get:
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Theorem 2.1. — There is a natural identification

isomorphism classes of
(2.2) D*\(D®g Ap)*/(Op @z Z)* «—— { supersingular elliptic
curves over [,

2.8. Let O be any order in D. A Z-lattice A of D is called a right ideal of O
if O C O.(A) (cf. 1.5). If O is a maximal order, this is of course equivalent to
O = O,(A). Two right ideals A and A’ of O are said to be in the same right ideal
class if there exists a d € D* with dA = A’.

Let A be a lattice in D. It can be easily checked locally that O;(A) is a maximal
order of D if and only if O, (A) is a maximal order. Hence all right ideals of our fixed
maximal order Op are normal lattices in the sense of 1.5.

By 1.7 and 1.8 we know that locally all right ideals of Op are principal ideals.
Hence it follows that for every right ideal A of Op there exists a d € (D ®qgAyf)* such
that A = dOp. Therefore (D ®g Ay)* acts transitively on the set of all right ideals
of Op. Moreover, an easy local calculation shows that the stabilizer of the right ideal
Op in (D ®g Ayf)* is equal to (Op ®z i)x Thus we have a natural bijection

(2.3) (D g As)*)(Op @y Z)* — {right ideals of Op}.

Composing this bijection with (2.1) we get a bijection of £ with the set of right
ideals of Op. Explicitly, this associates to each equivalence class [(E, )] the right
ideal ¢ Hom(FEy, F) of Op = End(FE)).

2.9. The bijection (2.3) induces a bijection of the set of right ideal classes of Op
with D*\(D ®q Af)*/(Op ®z Z)*. Composing this with (2.2) we obtain:

Proposition 2.2. — There exists a natural bijection
. . isomorphism classes of
right ideal classes . .
(2.4) «—— ¢ supersingular elliptic
of OD —

curves over [,

2.10. By 1.7 and 1.8 we know that locally all maximal orders in D are conjugate
to each other. Therefore (D ®g Af)* acts transitively by conjugation on the set of
maximal orders in D. The stabilizer of the maximal order Op is the normalizer of
Op in (D ®g Ay)*. It can be computed locally and by (1.4) and (1.5) we have

(2.5) N(p@ois)« (Op) = Q* (D) x (Op @3, Z7)).
2.11. Let O be a maximal order of D and d € (D ®g As)* such that O = dOpd~".
Then it follows at once from the definition of a Frobenius element in 2.6 that if

IT € (D ®gAs)* is a Frobenius element with respect to Op, dIld~! is a Frobenius
element with respect to O.
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2.12. For d € (D ®q Ay)* let [(E, )] be the associated element in £ via the bi-
jection (2.1). Let IT be a Frobenius element with respect to Op. Then the pair
[(E',¢")] associated to dII is given by E/ = E® (= E®) and ¢ = Fg, o o® ")
where Fg, : E(()p IR — Fy is the relative Frobenius.

Moreover, if A = dOp is the right ideal of Op corresponding to [(E, )] via the
bijection (2.3), the right ideal corresponding to [(E’, ¢')] is given by dIIOp = dOp =
ITA where IT = dIId~" is a Frobenius element with respect to O = O;(A).

2.13. Let m, C Op, be the maximal ideal. For a maximal order O of D let p = ONm,,
be the unique prime ideal of O which lies over p. Let A be any left ideal of O and let
IT be a Frobenius element with respect to O. Then arguing locally one sees that

ITA = pA.

2.14. It is easy to check that the canonical projection
{right ideals of Op} = (D ©g Ay)* /(Op ©z Z)*
— {maximal orders of D} = (D ®q As)* /N(pgqya,)x(Op)
is given by A — O;(A).

The projection (2.6) induces a map from the set of right ideal classes of Op to
the set of D*-conjugacy classes of maximal orders in D whose adelic version is the

(2.6)

projection
D*\(D ®q As)*/(Op @z Z)* — D*\(D ®g Af)* /N(paga,) = (Op)

(2.7) _
= D*\(D®q As)*/(Dy x (Op ®zZF)").

Lemma 2.3. — Let {O} be a conjugacy class of mazimal orders in D. Let R({O}) be
the set of classes of right ideals of Op which are sent to {O} under the map (2.7).
Then R({O}) consists either of one or two elements. It consists of one element if
and only if O contains an element d with Nrd(d) = p for one (or equivalently for all)
0 € {0O}.

Proof. We consider the map (2.7). Hence we are in the following situation: Let
G be a group, H and G2 be subgroups, and let G; be a normal subgroup of Gs.
Consider the canonical projection

w: H\G/G1 — H\G/G..
Let go € G and set F,) = w '(w(HgoG1)). Then G1\G acts transitively from the
right on Fy, and the stabilizer of HgoG\ is (g5 *Hgo N G2)G1/G).

In the special case of (2.7) we have H = D*, G = (D®gAf)*, G1 = (Op ®z 2)X
and Go = D)\ x (Op ®z 2p)x. Therefore G2 /G is the free cyclic group generated by
a Frobenius element IT (cf. 2.6). Moreover, IT1?G; € Q%G C (go_ngo N G2)G1 /Gy
for all go € G. Therefore the fibres of (2.7) consist of at most two elements.
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Now fix go and let O = goOpg, ' be the associated maximal order of D. A fibre F,,
consists of one element if and only if there exists in g, ! D* gy a Frobenius element. If
there exists a d € D> such that g, Ydgo is a Frobenius element (and hence an element
of Op ®z 2), we necessarily have d € go(’)Dga1 = 0. Moreover, go_ldgo is a Frobenius
element if and only if

_ 7y, il # p;
Nrd(gg 'dgo ) € { !

pLy, ifl=p.
Hence we see that F, consists of one element if and only if there exists an element
d € O such that Nrd(d) = p (the case Nrd(d) = —p can of course not occur). O

2.15. In 2.8 we have seen that every right ideal of Op is of the form ¢ Hom(Ey, E)
for some quasi-isogeny ¢: E — Ey. As we have

Oi(pHom(FEy, F)) = pEnd(E)p !

we see that every maximal order of D is of the form ¢ End(E)p~!. Moreover, the
D*-conjugacy class of ¢ End(E)¢ ! depends only on E. We denote it by {End(E)}.

Proposition 2.4. Let O be a maximal order and let E be a supersingular elliptic
curve such that O is in the conjugacy class {End(E)}. Let p be the unique (two-
sided) prime ideal of O which lies over p.
(1) The following assertions are equivalent:
(a) The elliptic curve E is defined over F,.
(b) Up to isomorphism there exists a unique supersingular elliptic curve E such
that the conjugacy class of O is equal to {End(E)}.
(¢) The prime ideal p is a principal ideal.
(d) The subgroup Q*O* of the normalizer Npx (O) is of index 2.
(2) If these equivalent conditions do not hold, we have:
(a) Up to isomorphism there are precisely two elliptic curves E and E' such that
{O} = {End(E)} = {End(E")} and for them E' = E®),
(b) Npx(0) =Q*0O*.

Proof. — Tt follows from Proposition 2.2 and Lemma 2.3 that (1)(b) is equivalent to
the existence of a d € O such that Nrd(d) = p. As p = m, N O such an element
generates p. Conversely, for every generator d of p we have Nrd(d) = p. This proves
the equivalence of (1)(b) and (1)(c).

An easy calculation shows that d € Npx (O) implies d € 1(0O®z7;)* for all primes
[ # p. Therefore we have an injective homomorphism

v: Npx(0)/(Q0%) — (D ®g Q)" /Q*(0 ©22,)* = Z/2Z

where the isomorphism is given by v, o Nrd. In particular, we see that if (1)(d) does
not hold, (2)(b) holds.
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The homomorphism v is surjective if and only if there exists an element d €
Npx(O) such that v,(Nrd(d)) = 1. For all d € Np«(O) we have v;(Nrd(d)) € 2Z for
all I # p. Therefore, if d € Npx (O) satisfies v,(Nrd(d)) = 1, we can find a A € Q*
such that Nrd(d\) = p. As d\ € Npx(O), we can write dA = ["a for all [ # p where
me€Zand a € (O®z7Z;)*. As v;(Nrd(d\)) = 0, we have d\ € (O®77Z;)*. Moreover,
Nrd(d)\) = p also implies that dA\ € O ®z Z, = Op,. Hence d\ € O. Altogether
we have seen that v is surjective if and only if there exists a d € O N Npx (O) with
Nrd(d) = p. Such an element generates p and thus (1)(d) implies (1)(c).

Conversely, for every d € O with Nrd(d) € p? we have d(O @z Z;)d™' = (O @4 7))
for all primes [ and hence d € Npx (O). Therefore the converse implication does also
hold.

Next we show that for any supersingular elliptic curve E we have

{End(E)} = {End(E®" H )}

Choose a quasi-isogeny ¢: E — Fy and let I = ¢ Hom(Fy, F') be the corresponding
right ideal of Op. The right ideal corresponding to the quasi-isogeny E(Spil) — Ey
—% E (where the first arrow is the relative Frobenius) is the right ideal 11/ where IT €
(D®gAyr)* is a Frobenius element with respect to the maximal order O;(1) (cf. 2.6).
Using a local calculation it follows at once that O;(ILI) = IO, (1)IT~1 = Oy(I).

We have already seen in the proof of Lemma 2.3 that if I = dOp and I' = d'Op
(with d, d’ € (D ®g Ay)*) are two right ideals of Op with {O;(I)} = {O;(I")} then
there exists a Frobenius element II with respect to Op and an integer n such that
the right ideal class of d'Op is equal to the right ideal class of dII"OQp. Writing
dIl = IId for a Frobenius element II with respect to O;(I) (see 2.11), we see that
the right ideal classes of I’ and II"J are equal. Let E be the supersingular elliptic
curve corresponding to the class of I and let E' be the supersingular clliptic curve
corresponding to the class of I’. Then this implies that there exists an integer n such
that B’ = E®") and this completes the proof. O

2.16. Note that the proof of Proposition 2.4 also shows that every supersingular
elliptic curve is already defined over IF,..
Moreover we have seen:

Corollary 2.5. — Let O be a mazimal order of D and set N := Npx(O). Consider
the subgroups O* C Q*O* C N. Then

O* ={de N |Nrd(d) =1},
Q*0* ={de N |Nrd(d) € (Q*)*}.
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3. The genus of the quadratic space Hom(E', F)

3.1. For any two supersingular elliptic curves E and E’ we will consider the free
Z-module Hom(E’, E) together with the quadratic form given by the degree.

As E and E’ are supersingular, Hom(E’, ) has rank 4 as a Z-module. We have a
canonical map of Z;-modules

«a: Hom(E', F) ®z Z; — Hom(T,(E"), T)(E)).

As the union of the ["-torsion E[I"] for n > 1 is scheme-theoretically dense
in K, « is injective. Moreover, the cokernel of « is torsionfree: Indeed, let
7 € Hom(T;(E'), T;(F)) be such that I7 = a(p) for some ¢ € Hom(F', F) ® Z;. We
write ¢ as the limit of sequence of ¢,, € Hom(FE’, E) converging to . For large n we
have T;(v,) = l7, for some 7,, € Hom(T;(E"), T;(F), and therefore the restriction of
©n to the [-torsion E[l] is zero. But this implies that ¢ is divisible by [.

As both sides have rank 4, it follows that « is an isomorphism. Choosing an
identification T;(E") = T;(E), we can consider the right hand side as a lattice in the
quaternion algebra End(7T;(F)) ®z, Q; and the quadratic form given by the degree on
the left hand side corresponds via a to the reduced norm on the right hand side.

Therefore the isomorphism class of the quadratic space Hom(E’, F) ®z Z; is in-
dependent of E and E’ for all . In other words (Definition 1.1), Hom(E’, F) and
Hom(F"’, F') are related for all supersingular elliptic curves E, E’, F, and F’.

Lemma 3.1. — Let E and E' be two supersingular elliptic curves over Fp. Then there
exists a quasi-isogeny ¢: E' — E of degree 1.

Proof. — As Hom(FE', E) and End(FE) are related, we can choose an isomorphism of
quadratic spaces Hom(E’, F) @7 Q = End(F) ®7 Q. Via this isomorphism we identify
Hom(FE', E) with a sublattice of End(F) ®7 Q. Choose an integer N > 1 such that
NEnd(E) C Hom(E’, E). Then Nidg corresponds to an isogeny ¢': E/ — E of
degree N? and ¢ = (1/N)¢’ is a quasi-isogeny of degree 1. O

3.2. If E and E’ are two supersingular elliptic curves, we can choose quasi-isogenies
p: E— Ey and ¢': E' — FEj such that deg(p) = deg(¢’) by Lemma 3.1. Then
ty,o: Hom(E', E) — D, ar— poaoy !
is an isometry. If we choose another pair (¢1,¢]) as above, we have
Lo (Hom(E' E)) = duy, i (Hom(E', E))d'™

for d, d € D with Nrd(d) = Nrd(d’). Hence it follows from Corollary 1.7 that the
proper class of v, (Hom(E’, F)) is independent of the choice of (¢, ¢"). We denote
this class by [Hom(E', E)].

Proposition 3.2. Every proper class in the genus of End(FEy) C D is of the form
[Hom(E', E)] for two supersingular elliptic curves E and E'.
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Proof. — Let A C D be a lattice in the genus of Op. By Corollary 1.7 there exist
d, d € (D ®q Ay)* with Nrd(d;) = Nrd(d}) for all primes [ such that A = dOpd'~*.
Denote by [(E, )], [(E',¢")] € L the quasi-isogenies associated to d, d’, respectively,
via bijection 2.1. Then ¢ Hom(E’, E)¢’~! C D depends only on the classes of (E, )
and (E',¢’) in L. Recall that Hom(E’, F) ® Z; = Hom(T;(E’), T;(E)) for all primes
[ (see 3.1). Therefore we have by 2.4:

pHom(E' E)¢' " =) ((¢ Hom(Ty(E"), Ti(E))¢' ') ®2 Zi N D)
l

= (" (Ti(p) Hom(Ty(E'), T(E))Ti(¢') " N D)
l

= () (di Hom(Ti(Ey), Ti(Eo))d; ™" 1 D)
1
=dOpd =" =A.

Moreover, it follows from 2.5 that the condition Nrd(d;) = Nrd(d;) implies deg(y) =
deg(y’). Thus A lies in the proper class [Hom(E', E)]. O

Proposition 3.3. — Let E, E', Ey and E| be supersingular elliptic curves. Then we
have [Hom(E', E)] = [Hom(E1, Ev)] if and only if there exists an integer n such that
E, = E'®") and By, = E®"),

Proof. — Choose quasi-isogenies ¢: E — Ey, ¢': E' — Ey, p1: By — Ep and
0y B} — Ep such that deg(y) = deg(y¢’) and deg(y1) = deg(p]). We set A =
Lo (Hom(E', E)) and Ay = 1, o (Hom(EY], Ev)). Let d, d', di, dy € (D ®q Ag)*
be elements such that the associated pairs in £ via the bijection (2.1) are equal to
(B, 9)], [(E",¢")], [(El’wl)]v [(E1, ¢1)] respectively. Then

A=dOpd~"', Ay =dOpd, "

We set @B = (Op ®z 2)X If p) = E'®") and E, @ E® "), we can choose
¢y = Fg o @'P") and ¢ = Fg, o ©P") where Fg, - E(()pi”) — Ejy is the relative
Frobenius. Then we have d{Of = d'TI"O}, and d,0f = dII"Of for a Frobenius
element IT with respect to Op. Note that II"Of = @,X)H" and eOp = Op = Ope
for e € O};. Therefore

Ay = dOpd; ! = dI"OpII"d™" = dOpd'~" = A.

Conversely, assume that A and A; are in the same proper class. By Corollary 1.7
there exist 0, &' € D* with Nrd(§) = Nrd(¢’) such that JA = A;¢’. Then the
maximal orders O;(A) and O;(A;) are in the same conjugacy class. Hence we see that
{End(E)} = {End(F;)} and then Proposition 2.4 implies that there exists an integer
n such that B, = E®"). Considerilng O, (A) and O, (A1) we see that there also exists

an integer n’ such that B} = /"),
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It remains to show that we can choose n = n’. As all supersingular elliptic curves
are defined over F,2, we can assume that n,n’ € {0,1}. If one elliptic curve X is
defined over F,, we have X = X®) and therefore we can assume that all four elliptic
curves are not defined over F,,. Then we have to show that the following case cannot
occur: E} 2 F' and E; # E. Note that we know already that £ % F implies
E, = E0),

We can assume that O,.(A) = O,(Ay) =: O. Then 6A = Ad" implies that
8 € Npx(0). As E' = Ej is not defined over F, we have Npx(0) = Q*O* by
Proposition 2.4. Thus there exists a §; € D* with Nrd(d;) = 1 such that ;A = A;.
Now E; = E® implies by 2.13 that there exists a 6} € D* such that A; = §}pA
where p is the prime ideal of O;(A) which lies over (p). But this implies

510 =MA=6p
and this is a contradiction as p is not a principal ideal by Proposition 2.4. O
3.3. Let E and E’ be two supersingular elliptic curves over F,,. Consider the natural
map
a: Aut(E) x Aut(E') — O(Hom(E', E))
(0,9") > (z— g’ ™)

Proposition 3.4. - The image of « lies in SO(Hom(E', E)) and the kernel of a con-
sists of {£1} (diagonally embedded in Aut(E) x Aut(E")). The image of «v is equal
to SO(Hom(E'. E)) if and only if E or E' is not defined over Fy,. If both curves are
defined over IF,, the image of o has index 2 in SO(Hom(E', E)).

Proof. — We choose quasi-isogenies ¢: E — Fg and ¢’ : E/ — Ej of the same degree.
Set A = pHom(E',E)¢'~' ¢ D, O; :== O;(A) and O, = O,(A). By Lemma 1.6 we
know

SO(A) = {(d,d') € D* x D* | dA = Ad', Nrd(d) = Nrd(d') }/Q*

where Q% is embedded diagonally. Note that the condition dA = Ad’ already implies
Nrd(d) = Nrd(d"). Morecover, dA = Ad’ implies O; = O;(dA) and hence d € Npx (Oy).
Similarly d’ € Np«(O,.). Thus we see

SO(A) = { ((I],7 d/) S N[)x (()1) X ]\‘T[)x ((),) | dA = Ad’ }/QX
For (d,d") € SO(A) we have by Corollary 2.5:
(3.1) deQ O} < d €Q*0;.

Further Q* N O/ =Q* NOJ = {£1}.
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Now consider the case where F is not defined over F,. By Proposition 2.4 this is
equivalent to Npx (O;) = Q*O;*. Therefore

SO(A) ={(d,d) € Q*O) x Q*O) | dA = Ad' }/Q*
={(d,d) e O xO) }/{£1}
which proves the proposition in this case. The case that £’ is not defined over F,, is
proved by the same argument.
It remains to consider the case that £ and E’ are both defined over F,. Then
Q*O; € Npx(O;) and Q*O C Npx(0O,) are subgroups of index 2 by Proposi-
tion 2.4. Moreover it follows from (3.1) that { (d,d") € O/ x O }/{%1} is a subgroup

of index 2 of SO(A). This finishes the proof. O
Corollary 3.5. — Let E and E’ be two supersingular elliptic curves over F,,. Then we
have

#Aut(E)#Aw(E"), if E, E' both defined over F,;

SO(Hom(E', E)) =
#SO(Hom(E', E)) {%# Aut(E)# Aut(E'), otherwise.

3.4. We now sketch an alternative formulation in the language of groupoids of some
of the above results suggested by the referee. We start with some general notations.

Let X be a set and let H be a group acting on X from the left. Then we denote
by [H\X] the category whose objects are the elements of X and whose morphisms
are for z,2/ € X

Hom x)(z,2") = {h € H | hx = 2" }.

Composition of morphisms is given by the multiplication in the group H. Clearly,
this category is a groupoid (i.e., every morphism is an isomorphism), and two objects
x, 2’ € X are isomorphic if and only if they are in the same H-orbit.

If X is of the form G/H' for some group G and some subgroup H' and if H is a
subgroup of G acting in the natural way on X, we have by definition

(3.2) Homg /(g1 H', g2H') = G N goaH'gy '

We denote by M the following category. The objects are supersingular elliptic
curves over F,,. For two such supersingular elliptic curves £/ and E the morphisms
from E’ to E in M are by definition the isomorphisms of elliptic curves from E’ to
E over F,,. Then Theorem 2.1 can be made more precise by saying that (2.2) induces
an equivalence of categories

[DX\((D g As)* /(Op @2 7)) =~ M.

This follows from (3.2) and the arguments in 3.2.
Let SL(Op) be the algebraic group over Z of elements with reduced Norm equal
to 1. Then Lemma 3.1 is by 2.5 equivalent to the fact that the canonical functor

[SL(OD)(@\(SL(Op)(A)/SL(OD)(Z))] — [D*\((D ®q Ap)* /(Op ©22)°)]
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is essentially surjective (which also can easily be proved directly). Moreover it follows
from the definition of a morphism in the above categories that this functor is indeed
an equivalence of categories.

Arguing as in the second proof of Lemma 1.6 one sees that the morphism

a: SL(D) x SL(D) — SO(D), (d,d") — (§ — dod’~")
is a surjection of algebraic groups with Ker(a) = ps (embedded diagonally in SL(D) x
SL(D)). Then « induces a functor
A: [SL(Op)(Q)\(SL(Op) (A7) /SL(Op)(Z))?
— [SO(D)(@)\(SO(D)(Af)/SO(Op)(Z))].
As we have seen, we can identify the left hand side with M x M. The set of isomor-

phism classes of the right side is the set of proper classes in the genus of Op = End(Ep)
(Corollary 1.4 and 1.5). Then Proposition 3.2 asserts that A is essentially surjective.

(3.3)

Moreover, Proposition 3.3 describes the fibres of the induced surjective map on iso-
morphism classes and Proposition 3.4 is the analysis in which way A fails to be fully
faithful.

Finally, Proposition 4.1 below can also be expressed in the language of groupoids
using the notion of direct and inverse image for functions (or more generally for
sheaves) with respect to the functor A. We omit the details.

4. Local densities

4.1. Recall that for two quadratic spaces @ and L over Z we write Ry (Q) for the
number of isometries Q — L. Note that Ry (Q) depends only on the classes of L and
Q. In this section we are going to express

Z Ruom(e,£)(Q)

4.1
( ) URUE!

(E',E)
in terms of local densities. Here the (E’, E) runs through all pairs of isomorphism
classes of supersingular elliptic curves over IF), @) is a fixed ternary positive definite
quadratic form over Z, and up = $# Aut(E).

Proposition 4.1. — Fiz a supersingular elliptic curve Ey. Then we have
RHom E'E (Q) RL(Q)
(4.2) PP L A 2
5B URUE - #SO(L)

Here on the right hand side, L runs through the proper classes of the genus of End(Ep).

Proof. -—— By Proposition 3.2 we know that the proper classes [Hom(E’, F)] exhaust
the genus of End(Ey) if (E’, E) runs through all pairs of supersingular elliptic curves.
If E and E” are both defined over F), the class L of Hom(E’, E') occurs once in the sum
on the left hand side of (4.2) by Proposition 3.3, and we have #SO(L) = dugup’ by
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Corollary 3.5. Otherwise, the class L of Hom(E’, E) occurs twice in the sum on the left
hand side of (4.2) and we have #SO(L) = 2ugup:. This proves the proposition. O

4.2. Let M be a quadratic space over Z,. We denote by Qpr: M — Z, its quadratic
form and let By, the bilinear form given by

Ba(x,y) = %(QM(J«' +y) = Qu(x) — Qurr(y))

4.3. Let M and N be two quadratic spaces over Z, of ranks m and n, respectively.
We choose bases (11;) and (v;) of M, N respectively and let T = (Bar(pi, 1)) €
Sym,,(Z,)" and S = (Bn(vi,v;)) € Sym,(Z,)" be the corresponding matrices.
For r > 0 we define A,-(M,N) = A, (T, S) as

#{ X € My (Zyp/D"Zp) | 'XSX —T € p" Sym,,(Z,)" }
=#{co: M/p"M — N/p"N | Qn(c(x)) = Qas(z) mod p" }.

For r > 0 we set
(»Yp(A'L N) — Otp(T, S) _ 2‘5",” (py-)m(er1)/27mnj4p'_(j‘47 N)

It is shown in [Ki, 5.6] that this is independent of r if r is sufficiently big. We call
a,(T,S) the local representation density. Note that for p = 2 our representation
density is 20"~ D/2_times the representation density «, defined in [Ki].

4.4. For any class IV of lattices in a positive definite quadratic space over Q we set
o(N) = #O(N), s0(N) = #SO(N).

Moreover, we set,

1
w(N) := Z ol N7}

in o)
where N’ runs through all classes within the genus of N. We call w(N) the weight
of N.
Then we have o(N) = so(N) if and only if there exist two proper classes in N.
Therefore

(4.3) w(N):% > SO(?V,).

N’ proper class
in gen(N)
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Let M and N be lattices in positive definite quadratic spaces over Q. By the mean
value of the representation of M by N we mean

B Ry (M
N’ class
in gen(N)

-1

- 1 Ry (M)
B Z so(N) Z so(N')

N’ proper class N’ proper class
in gen(N) in gen(N)

Clearly, m(M, N) depends only on the genus of N.

4.5. We recall the Minkowski-Siegel formula (cf. [Ki, 6.8]): Let M and N be lattices
in positive definite quadratic spaces over Q. For any prime [ we define o;(M, N) :=
oq(M @7 Z;, N ®zZ;). Put m :=rank(M) and n := rank(N). Set

é, if eithern=m+1orn=m > 1,
€Emon 1= )
1, otherwise.

We also define

m—1
Ooo(M, N) 1= gm(@n=mt1)/4 (H I((n— 1:)/2)'1>
=0

% (det(N)) ™" (det(ar)) T2,

Here I' denotes the gamma function.

Theorem 4.2 (Minkowski, Siegel)

(4.4) m(M,N) = €, ,27 """ D20 (M. N) [ eu(M, N)
l

where | runs through all prime numbers.

Theorem 4.3. Let M be a positive definite ternary quadratic space over Z and let
N be the genus of End(Ey) for a supersingular elliptic curve over F,). Then

RH()]H(E’,E)(AI) p— 1 2 7T4
> =8( 5 —l—llm(M,N)

. )
URUE )
(BT ) EUE r

where | runs through all prime numbers [.

Proof. — We apply the Minkowski-Siegel formula: We have m = 3 and n = 4. We
first compute det(N). As N is positive definite, it suffices to compute ord;(N ®Z;) for
every prime [. For [ # p the quadratic Z;-space N ® Z, is isomorphic to (M2 (Z;), det)
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and with respect to the basis ({ §), (5 9)
to

C(98), (0 8) the associated matrix is equal

(4.5) S = -

For | = p we have N ® Z; = (Op
associated matrix is equal to

Nrd) and hence there exists a basis such that the

p’

diag(1, —d, p, —dp), if p# 2,
112

4.6 S, = 1/2 1
( ) I / . if]):2’

where d is some element in Z \ (Z))* (see [Ki, 5.2]).

If follows that det(N) is equal to 27 4p? and hence we get

o (27 1p%) /2 :27”_4.

T
Qoo (M, N) = T p

(DE(3/2)0(2)

By (4.3) we can calculate the weight of N as

1 1
w(N) = 3 Z SolN)”

N’ proper class
in gen(N)

Using Proposition 3.3 and Corollary 3.5, it follows that

1 1
2 (E;E) # Aut(E)# Aut(E")

1 1 ’
T2 (Z #Aut(E))

w(N)

where in the last equality we used Eichler’s mass formula.
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Now using Proposition 4.1, the Minkowski-Siegel formula tells us

Ritom(er (M Ry (M
> etIDY #SNO((N’))
(E"E) N’ in proper class

of gen(N)

= 8w(N)m(M,N)

p—1\? ,
=1 <‘2?4—> €342 a0 (M, N) Ha,(M, N)
!
p—1 2
=8 — M .
( 12 ) ])31;[(”( I.N) -

4.6. In [Wd2] we will give explicit expressions for the local representation densities

ay(M, N) for arbitrary positive definite ternary quadratic spaces M and all primes [.
We deduce (cf. [GK, 6.23]):

Corollary 4.4. — Define 3(M) = (1 —172)"2a;(M, N) and A(M) = 4det(M). As-
sume that M is a positive definite ternary quadratic space over 7 which is isotropic
over Qq for alll # p. Then M is anisotropic over Q, and

ZM:“ T s

(E'.E) Upte UA(M),1£p
Proof. — We have a,(M,N) = 2(p + 1)*p~! by [Wd2, Theorem 1.1}, and hence
Bp(M) = 2p*/(p — 1)%. Moreover we know by [Wd2, Corollary 2.2], that (M) =1
for all [ # p which do not divide A(M). Therefore we have

3
[Jourr, Ny = (Q_Ll)zl‘[u -1 JI s
l p l IA(M),l#p
2p? ‘
- (1_)*%)2((2)72 1T s
LA(M),l#p

As ((2) = 7?/6, the corollary follows from Theorem 4.3. O
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6. LUBIN-TATE FORMAL GROUPS

by

Volker Meusers

Abstract. — We give an exposition of the theory of formal complex multiplication in
local fields after Lubin and Tate. We recall the construction of Lubin-Tate modules,
the structure of torsion points of their generic fibre and explicit local class field theory.
We follow the original exposition of Lubin and Tate, and the exposition in Neukirch’s
book.

Résumé (Groupes formels de Lubin-Tate). — Nous donnons une exposition de la théorie
de la multiplication complexe formelle dans les corps locaux d’aprés Lubin et Tate.
On rappelle la construction des modules de Lubin-Tate, la structure de leurs modules
de torsion de leur fibre générique et la théorie du corps de classes locale explicite. On
suit Darticle original de Lubin et Tate, et le livre de Neukirch.

1. Construction of Lubin-Tate Modules

Let K be a field complete with respect to some discrete valuation. Let Og be
its ring of integers, p its maximal ideal. Assume the residue field Ok /p to be finite
and let ¢ be the number of its elements. Prime elements of Ok are denoted by 7 or
7. Let k be an algebraic closure of O /p. Let K*P be a fixed separable closure of
K and K" C K®°P the maximal unramified extension of K. Let M and C denote
the completions of K" and K*°P. Denote by Oy (resp. O¢) the ring of integers of
M (resp. C). Let C be the category of complete local noetherian O x-algebras with
residue field k.

Definition 1.1. — Let i: O — R be an Og-algebra, e.g. O, Op or k. A for-

mal Og-module over R is a pair (H,~yy) consisting of a (one-dimensional commu-
tative) formal group law H(X,Y) € R[[X,Y]] together with a ring homomorphism

2000 Mathematics Subject Classification. — 11531, 14K22, 14L05.
Key words and phrases. — Lubin-Tate formal groups, local class field theory, complex multiplication.

© Astérisque 312, SMF 2007



50 V. MEUSERS

vu: O — Endg(H) C R[[T]] given by sending an element a € Ok to the endomor-
phism vy (a)(T') € R[[T]] of H(X,Y). As a normalization condition we require that
the O g-algebra structure on R induced by the isomorphism

Oyn(a)(T)

=L H —
Ok Lie(H), a o7

T=0
agrees with the structure given by i: O — R, in other words we require vy (a)(T)
to be of the form

u(a)(T) = i(a)T + -~ € R[[T]].
We write [a)(T') for vy (a)(T) and a = i(a) € R if no confusion is possible.

For R € € write H(R) for the abelian group (mpg,+z) where we have set
z+py = H(z,y) for x,y € mg. This converges since R is assumed to be complete.
This group is also an (ordinary) O g-module by setting axz = a-gz = [a](z). Note that
unless (H,~vg) is the formal additive group, i.e., (((A}(L(X, Y)=X+Y, V&, (a)(T) = aT),
this O g-module structure is not the standard structure on mp as an ideal of R. For
a finite extension L|K with ring of integers Oy, € € and maximal ideal my, C O we
set H(L) = H(my,). Similarly for infinite extensions after completion.

The goal of this section is to construct, as for ordinary complex multiplication (see
Remark 3.5 below), a formal O x-module (G, ~q) over Oy such that

Glp) = [ Ker(a) = G[]

is isomorphic to the kernel of the Frobenius G @k — (G ® k)@ when reduced modulo
the maximal ideal of Op;. Lubin and Tate construct G as a base change G = H; ®¢
O of a formal O g-module H, over O, the so called Lubin-Tate module associated
to the prime element m € Ok. As we will see H, depends on the chosen 7 while G
will be independent of it.

By our normalization condition vg(7)(T) is of the form

Ya(m)(T) =7T + -+ € Og|[T]].
The condition on the Frobenius requires that
Yo (m)(T) = T? mod 7.
This justifies the following definition:
Definition 1.2. — A power series f(T) = 7T + --- € Og/[[T]] such that
f(T)y=Tmod 7

is called a Lubin-Tate series associated to m. The set of Lubin-Tate series for 7 is
denoted by Fr. A formal Ox-module (H,~vgy) over Ok with vy (7)(T) € Fr is called
Lubin-Tate module.
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Examples 1.3
(1) The simplest example of a Lubin-Tate-series is

f(T)y=aT+T9¢€ F,.

(2) In the cyclotomic case, i.e., for K = Qp, Ox = Z, and 7@ = p € Z, the

polynomial
f(y=T+1)?—-1=pT +p(...)+T? € F,.
is a Lubin-Tate-series associated to m = p. One easily checks that in this case the
formal multiplicative group
Gm(X,YV)=(1+X)14Y)—1

is a Lubin-Tate module associated to f (7).

The construction of Lubin-Tate-modules is based on the following lemma.

Lemma 1.4. — Let 71, T be two prime elements of M and f(T) € Fy resp. g(T) € F=.
Let L(X1,...,X,) = > a; X; be a linear form with coefficients in Op such that

7L(Xy,...,X,) =7TL(X1,.... Xp)

where o is the continuous extension of the Frobenius in Gal(K™|K) to M. Then
there erists a unique power series F(X1,...,Xpn) € Op|[[ X1, ..., Xn]] such that

(11) F(Xl,‘ .. ,Xn) = L(Xl,‘ . ,Xn) mod ()(17 N .,Xn)2
and
(1.2) FIE(Xq, . X)) = F2>g(X0), -, 9(X)).

where (X1,...,X,,) denotes the ideal generated by X1,...,X,,. If the coefficients of
f,9,L lie in Ok then F also has coefficients in Ok .

The idea of the proof is to construct F' inductively modulo powers of the ideal
generated by X, ..., X, and then use the completeness of the power series ring. The
induction starts with (1.1). For the induction step one plugs in (1.2) and uses that
f and g are Lubin-Tate series to see that the coefficients are in Ops. See [N] for a
detailed proof.

We use the lemma to construct Lubin-Tate modules as follows:
For f(T) € I, let Hy(X,Y) be the unique solution of the equations
Hi(X,Y)=X +Y mod (X,Y)?

and
J(Hi(X,Y)) = Hy (f(X), f(Y))
For each a € Ok and f(T'), g(T) € Fx let [a];4(T) be the unique solution of

[a]}.4(T) = aT mod T?

and

flaly,o(T)) = lals,4(9(T))
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To simplify notations we shall write [a] ; instead of [a] s r. The following theorem shows
that the series H(X,Y') together with vz, (a)(T) = [a];(T) is in fact a Lubin-Tate
module associated to f(T).

Theorem 1.5. — For any f(T) € F, the series Hy(X,Y) is a formal group law over
Ok, i.e., the following identities hold:

H;X,Y) = H;Y. X)
Hy(Hf(X.Y),Z) = Hy(X,H;(Y.Z))
H{(X,0) = X
H;0,Y) =Y
Hy(X,[-1]¢(X)) = 0.
For g.h € ¥, and a,b € O we have
Hy([a]pg(X). [a]yg(Y)) = [a]pq(Hg(X,Y))
[a]; ,([blg.n(T)) = [ablsn(T)
la+b]; (T) = He(lalyg(T), [b]14(T))
(7 (T) = f(T)
[l]f(T) T.

In particular (Hp(X,Y), vy, ) with yu,(a)(T) = [a];(T) is a Lubin-Tate-module such

that vy, (m)(T) = f(T). For two series f(T),g(T) € Fr we have the canonical iso-
morphism

[ 5.g(T): Hy — Hy

of formal O -modules over Q.

The equalities in the Theorem are all true modulo squares and follow from the
uniqueness assertion of Lemma 1.4. TFor a detailed proof see [N, proof of Theo-

rem V.4.6].

Remark 1.6. — Although H; does not depend on the particular choice f € JF; it does
depend on the particular choice of the uniformizing element 7 € Og. They become
isomorphic over Oy because of the following lemma.

Lemma 1.7. — Let m and T be two prime elements of O with m = um for some unit
u € OF. Let o be the Frobenius of M as above. There exists some € € Of, such
that w = ¢~ Let f(T) € F and g(T) € F= be Lubin-Tate series. Then there
exists a unique power series 0(X) € On[[X]] such that 0(X) = eX modulo (X)? and
fo0 =467 o0g. Furthermore §(X) induces an isomorphism H, = H ¢ of Lubin-Tate
modules (defined over Oy ).
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This is proved using Lemma 1.4. For a detailed proof see [N, Corollary V.2.3], and
also [LT, Lemma 2].

2. Torsion points of the Generic Fibre

Now fix some f € F,. We want to describe the structure of torsion points of the
generic fibre of Hy(C') as a Galois module. Recall that for every separable algebraic
extension K C L C C we set Hp(L) = Hf(6L). If Ly C L then Hf(L,) C Hf(L). If
L|L, is Galois then Gal(L|Lq) operates naturally on Hy(L) in a manner compatible
with the Ox-module structure. This results from the fact that the Galois group
operates continuously on Oy and that Hy is defined over O C Op,. In this way
Hy(L) becomes a Gal(L|L;) x Og-module. For another g € J; the canonical map
induced by [1]74(T) is an isomorphism of Gal(L|L;) x Ox-modules. It commutes
with the inclusions Hy(L1) C Hy(L).

Set

Ay = Hy(O)lp™] € Hf(C)

m>0

Then Aj is a torsion O g-module, i. e., the union over its sub-modules A, = As[p™].
It is clear that the Galois extension K C Ly ., = K(As[m]) does not depend on
f € Fr. Let us denote its Galois group by G ,, = Gal(L, | K).

Theorem 2.1. — Let 7 be a prime element of Ok and f € F.

(1) The Ok -module Ay is divisible.

(2) For each m, the O -module Ay, is isomorphic to Ok /p™.

(8) The Og-module Ay is isomorphic to K/O.

(4) For each T € G there exists a unique ur. € O such that TA = [u;];(X) for every
(5) The map T+ w. is an isomorphism of G onto the group O, under which the
quotients Gy of G correspond to the quotients Oy /(1 +p™) of Of.

See [LT] for a proof.

Example 2.2. — In the cyclotomic case we get 1 + Ay, = ppm, 1+ Ap = ppe. We
have @m (Qp) = pZ, with addition given by the identification with 1 + pZ, C Z;
as a multiplicative subgroup. In this case the multiplicative structure is given by
exponentiating, i.e.,

[a](T) = i <Z>T" =(1+7T)" 1

n=1

for a € Zy.
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3. Local Class Field Theory

Let m € Ok be a fixed prime element. Since L, is totally ramified over K, it is
linearly disjoint from K™ over K, and the Galois group Gal(L,K""|K) is the product
of G, = Gal(L,|K) and Gal(K™|K). For each prime = in O, we can therefore define
a homomorphism

pr: K — Gal(L,K™|K)
such that
(1) For each unit u € O, the automorphism p,(u) is the identity on K™, and on L,
the reciprocal 7,7 ! of the element 7, € G corresponding to u by the isomorphism of
the theorem; and
(2) pr(m) is the identity on L, and is the Frobenius automorphism o on K™.
Thus for an arbitrary element @ = un™ € K* we have, by definition:
pr(a) =0™ on K™

and
AP(@) = [ (N) for A € Ay
Theorem 3.1. — The field LK™ and the homomorphism p. are independent of m.

This follows easily from Lemma 1.7. See [LT] for a detailed proof.

Corollary 3.2. — The field L, K™ is the mazimal abelian extension of K, and pr s
the reciprocity law homomorphism for it, i.e.,

px(a) = (a, LaK"|K)
for every a € K*.
See [LT] for a proof.

Remark 3.3. — Note that while both the field L, and the reciprocity map p, can be
defined in terms of a Lubin-Tate series alone, the proofs depend heavily on the extra
structure given by the associated Lubin-Tate module.

Example 3.4. — In the cyclotomic case we get for a = up’»(®) € Q, that

(@, Qp(QIQ(¢ — 1) = [u']s(C = 1)
or
(a, Qp(Q)IQp)¢ = ¢
if ( =1+ X is a primitive p™-th root of unity or in other words A =¢ —1 € Ay .
Remark 3.5. — There are strong analogies with the classical theory of complex multi-
plication and explicit reciprocity laws for imaginary quadratic fields. In fact for every

single statement presented here, there is an analogous one if one replaces the Lubin-
Tate modules by elliptic curves with complex multiplication. See for example [L].
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7. FORMAL MODULI OF FORMAL Ox-MODULES
by

Eva Viehmann & Konstantin Ziegler

Abstract. — We define formal Og-modules and their heights, following Drinfeld. To
describe their universal deformations we introduce a formal cohomology group.

Résumé (Espaces de modules formels de O -modules formels). — On définit les Ok -
modules formels et leurs hauteurs, suivant Drinfeld. Pour décrire leurs déformations
universelles, on introduit un groupe de cohomologie formelle.

Notation. — FExcept in the proof of Lemma 2.1, all constant coefficients of power series
are assumed to be 0.

Acknowledgements. — During the preparation of Section 3 we profited from the talk
given by S. Wewers in the ARGOS seminar. We thank I. Vollaard and W. Kroworsch
for helpful comments on a preliminary version.

1. Formal modules

Let A, R be commutative rings with 1 and i : A — R a homomorphism. We also
write a instead of i(a) for the image of a under .

Definition 1.1
1. A formal A-module over R is a commutative formal group law F(X,Y) =X +
Y +--- € R[[X,Y]] together with a ring homomorphism v : A — Endg(F') such
that the induced map A — Endg(LieF’) = R is equal to the structure map i.
2. For a € A we write y(a)(X) = [a|p(X) = aX + -+ € R[[X]] for the corre-

sponding endomorphism of F. We will also use the notation X +r Y instead of
F(X,Y).
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3. A homomorphism of formal A-modules over R is a homomorphism ¢(X) :
F(X,Y) — G(X,Y) of formal group laws F(X,Y),G(X,Y) over R such that
povr(a) = va(a) oy for all @ € A. Denote by Hompg(F,G) the set of homo-
morphisms from F to G.

Definition 1.2. — For r > 2 let v, = p, if r is a power of a prime p, and v, = 1 else.
Denote by
1 .
ColX,Y) = (X + V) = X"~ ¥7)
the modified binomial form of degree 7.

Consider the functor which assigns to every A-Algebra R the set of formal A-
modules over R. It is represented by an algebra A 4 which is generated by the inde-
terminate coefficients of the series F' and v(a) and whose relations are those which
are required by the condition that (F,~) is a formal module. It has a natural grading;:
the degree of a coefficient is one less than the degree of the corresponding monomial
in X,Y. It is induced by the action of G,, on Spf(A[[t]]). From this description (or
by an elementary calculation) one sees that the grading is compatible with concate-
nation of power series. The elements of the form ab with dega,degb > 1 generate a
homogeneous ideal. Let A4 be the quotient with induced grading Ay = b A”

Denote by G, r the additive formal group law over R. With the canonical R—action
v(a) = aX, it becomes an R-module over R.

Lemma 1.3. — If A is an infinite field, then for each formal A-module over A there
exists a unique tsomorphism with G, 4 whose derivative at zero equals 1. In this
case there is a canonical isomorphism Aa = Alci,ca,...] as graded algebras where
degc; = 1.

To prove this lemma, one explicitly computes the desired isomorphism, compare
[D, Prop. 1.2]. The ¢; correspond to the coefficients of a homomorphism to the
additive formal group law together with the standard A-module structure.

From now on let K be a complete discretely valued field with finite residue field
F,, where ¢ = p' for some prime p. Denote by Ok the ring of integers of K. Let 7
be a uniformizer.

Theorem 1.4. —— Ao, and Oklg1,92,...] are non-canonically isomorphic as graded
algebras where deg g; = 1.

Proof. — First we show that A%;l =~ Ok as Og-modules for all n > 2. For each i
let F; and [a]; denote the polynomials of degree ¢ obtained from the universal formal
module by leaving out all summands of higher degree. We write

n-—1
Fu(X,Y) = Furt(X,Y) 4 ) Xy
i=1
and
[a']n = [a]n—l + h((l)Xn.
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Then the ¢; and h(a) generate ]\”_1. As F is a formal group law, we obtain
S 11 XYY"t = aC,(X,Y) (compare [H, Lemma 1.6.6]). Note that we need here
that we consider elements in Ap, and not in Ay, itself. In particular, A" Dis
generated by o and h(a). The condition that v : Ox — End(F) is a homomorphlsm
implies that modulo (X,Y)""! we have

[ab]p—1(X) + h(ab) X" = [a]n—1([B]n—1(X) + h(D)X™) + h(a)(bX)",
Fua(la]n-1(X) + h(@) X", [b]n-1(X) + h(0)X") + aCp(aX, bX)
=[a+blp—1(X) +hla+b)X",

and

(@1 (Fa 1 (X,Y) + aCa(X, Y)) + h(a) (X + V)"
=Fo_1([a)n-1(X) + h(a) X", [a]n-1(Y) + h(a)Y") + aCp(aX,aY).

In A%;l this leads to the relations

(1.1) ah(b) +0"h(a) = h(ab)
(1.2)  h(a+b)—h(a)—h(d) = aCyla,b)

n _ Jh(a)  ifnis not a power of a prime
(1.3) (a" —a)a = {h(a)p’ ——

and these are all relations between the generators «, h(a) of ]\Té;l If n is invertible
in Ok, then (1.3) shows that each h(a) is a multiple of a. If n is a power of p
(where ¢ = p') but not of ¢ itself, then there exists an a € O with a" —a ¢ (7).
From (1.1) we obtain (a”™ — a)h(b) = (b™ — b)h(a), thus h(b) is a multiple of h(a).
Finally (1.2) shows that « is also a multiple of h(a). Now let n be a power of ¢q. By
choosing h(a) — (a™ — a)/7 and a — p/7 we define an epimorphism of O -modules
A’é}l — Ok. It is well defined as (1.1)-(1.3) are the only relations of A’é;l It remains
to prove that /~\""1 is generated by h(m). Let M = A?g;l (h(m)), and denote by T € M
the image of z € A” ! Then (1.1) shows that 7h(b) = h(xb) = 7"h(b), thus h(mb) = 0
for all b € Ok. BCbldCb, (1.3) shows (n" — )@ = h(r)p = 0, hence 7@ = 0, and M
is an F,-vector space. As n is a power of ¢, (1.1) reduces to ah(b) 4 bh(a) = h(ab).
This shows

h{a) = h(a™) = na™1h(a) =0
for all a. Then (1.2) implies that C,,(a,b)a = 0 for alla,b € F,. By [H, Lemma 21.3.2],
there is an « € F), with Cy,(2,1) # 0in F,. Thus @ =0 and M = 0.

Hence in all cases [\?9:(1 > Ok, and we have an epimorphism of graded algebras
Oklg1,92,...] = Ao, . Here g; is a lift of a generator of /N\}QK. The construction of the
isomorphism Ax 2 Klc1,ca,...] in Lemma 1.3 implies that the canonical morphism
Ao, ® K — Kley,ca,...] which is compatible with the grading is also surjective.
Comparing dimensions one sees that the epimorphism Og[g1,92,...] — Ao, is an
isomorphism. O
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2. Heights

Let Ok be as above and let R be a local Og-algebra of characteristic p with residue
field k.

Lemma 2.1. — Let F,G be formal Ok -modules over R and let o € Hompg(F, G)\ {0}.
Then there is a unique integer h = ht(c) > 0 and 8 € R[[X]] with o(X) = B(X")
and 3'(0) # 0. The integer h is called the height ht(a) of a.

This lemma is analogous to the corresponding result over a field, compare [H,
18.3.1]. For ao = 0 we set ht(a) = oc.

Proof. We first show that a(X) = B(XP") for some 3 with #'(0) # 0. To do this
we assume (X)) # 0 with (0a/0X)(0) = 0 and show that a(X) = 3(XP) for some
homomorphism 3 of (not necessarily the same) formal group laws. The claim then
follows by induction.

Partial differentiation of a(F(X,Y)) = G(a(X), a(Y')) with respect to Y gives

1oJe oF oG Je!
ox FXY)) 5o (X, V) = oo (al(X), oY) 55 (Y).
Substituting Y = 0 and using (0a/9X)(0) = 0 we obtain
O oF
As (OF/0Y)(X,0) =1+ a X +--- € R[[X]]*, we obtain 2% (X) = 0. Hence a(X) =

B(XP) for some 3 € R[[X]]. Let 0. F be the formal group law obtained from F by
raising each coefficient to the pth power. Then an easy calculation shows that 3 is a
homomorphism from o, F to G.

We now have to show that p™ is a power of ¢q. Let a € Og. Then

[ala(a(X)) = a(la]p(X)) = F/(0)i(a)?" XP" +---
and on the other hand
[a]a(a(X)) = B'(0)i(a)XP" +--- .

This implies 3'(0)(i(a) — i(aP")) = 0 with #(0) # 0, hence i(a) —i(a?") = i(a — a?")
maps to 0 in k. Thus a?” = a for all a € F, and p™ is a power of g. O

Definition 2.2. The height of a formal Og-module F over R is

ht(F) h if [r]F has height h
1 =
oo if [r]p =0.

Remark 2.3. This definition is different from the definition of height of a formal
module given in [H], where it is defined as the height of the reduction of the module
over the residue field.

Lemma2.4. — Let R be as above and let (F,~vp) be the formal Ok -module corre-
sponding to a homomorphism ¢ : Ao, — R. Then ht(F) = min{i|p(g, 1) # 0}.
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Proof. — In the proof of Theorem 1.4 we identified the generator g, _; of A‘g;l with
the coefficient of X of [r](X). O

The following lemma reduces the examination of formal modules over fields and of
their deformations to formal modules of an especially simple form. For a proof see [D,
Prop. 1.7].

Lemma 2.5. — Let (F,v) be a formal Ok -module of height h < oo over a separably
closed field k of characteristic p > 0. Then F' is isomorphic to a formal module
(F'.~") over k with

X +Y (moddegqh),
aX (mod deg ¢"),

h

X1

=
3

s
I

Such modules are called normal modules.

Fix an integer h > 1 and let Fy be a formal Og-module of height h over k. Assume
that R is a local artinian Og-algebra with maximal ideal m and residue field k. Let
I < R be an ideal. We set R = R/I. If F is a lift of Iy over R, we set F':= F Qg R.

Lemma 2.6. Let F,G be lifts of Fy over R. Then the reduction map
(2.1) Hompg(F,G) — Homg(F,G)

18 injective.

Proof. — The reduction map in (2.1) is the composition of finitely many maps
Homp, ,,(F ® Ry+1,G® Ryqq) — Hompg, (F ® R,,G R R,),

where R,, = R/I, with I,, = INm™. We may therefore assume that m-I = 0. Then [ is
a finite dimensional k-vector space, and we have I? = 0. Let a(X) = a1 X +a2X?*+. ..
be a homomorphism from F' to G such that a(X) =0 (mod I). We get

a([r]r(X)) = [rla(a(X)) = 0.

Since ht(Fp) < oo, we have [1]p(X) # 0 (mod m), thus @ = 0 which proves the
lemma. O

From now on we may consider Hompg(F, G) as a subset of Homy(F, G).

3. Deformations of modules, formal cohomology

Let F' be a formal Og-module of height h < oo over k, and let M be a finite
dimensional k-vector space. A symmetric 2-cocycle of F' with coefficients in M is a
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collection of power series A(X,Y) € M[[X,Y]] and {§.(X) € M[[X]]}aco, satislying

(3.1) A(X,Y) = A(Y, X)

(3.2) A(X,Y) + (F( Y),Z)=AY,Z)+ A(X,F(Y,Z))
(3.3) 0a(X) +64(Y) + A([a] p(X), [a ] Y)) = i(a)A(X.Y) + 64(F(X.Y))
(3.4) 00 (X) + 0p(X) + A(lal F (X), [D) (X)) = dats(X)

(3.5) i(a)dp(X) 4 0a([b] (X)) = dan(X).

For any ¥ € M|[[X]], the coboundary of W is the symmetric 2-cocycle (AY, {§¥}) with
(3.6) AY(X)Y) = W(F(X,Y)) - TU(X)- W)
(3.7) V(X)) = Y(a]p(X)) —i(a)¥(X).

The coboundaries form a subspace of the vector space Z2(F, M) of symmetric 2-
cocycles. The quotient of the symmetric 2-cocycles by the coboundaries is a k-vector

space denoted H?(F, M).
The following lemma is due to Keating, see [K2, Lemma 2.1].

Lemma3.1. — A cocycle (A;{6,}) € Z*(F, M) is zero if and only if 6,(X) = 0.

Proof. — If the cocyle is zero, then clearly §,(X) = 0. Assume conversely that
0-(X) = 0. Substituting a = 7 in (3.3) gives

A([w]p(X), [7]p(Y)) =0,

since §,(X) =0 and i(7w) = 0. As [7]p(X) # 0, this implies A(X,Y) = 0. Condition
(3.5) with a = 7 together with 6,(X) = 0 shows 0,4(X) = 0. The same formula with
b = 7 and a arbitrary gives 6,([7]F(X)) = 0. This implies that 6,(X) = 0, so all
components of the cocycle are zero. O

In the following let R denote a local artinian Og-algebra with maximal ideal m
and residue field k. Let I C m be an ideal with m/ = 0. Then [ is a k-vector space.
We set R = R/I. If Fy is a formal module over k and F is a lift of Fy over R, denote
by F = F ®g R the reduction modulo I. The reduction modulo m of power series
over R is denoted by -*.

Proposition 3.2. — In the setting above let Fy be a formal OK module over k and let
F,G € R[[X,Y]] be formal Ok -modules with F* = G* = Fy. For p(X) € R[[X]] let
7 € R[[X]] be the image. Assume that B is a hom()morphzsm from F to G. Then

1. There is an element of Z*(Fy,I) defined by
A=p(F(X,Y)) —ce(X)—goelY)
ba = ¢(la]r (X)) —a laa(p(X)).

2. (Aj{data) =0 if and only if ¢(X) € Hompg(F, G).

3. The class of (A;{da}a) in H*(Fy, I) is independent of the choice of the lift ¢ of
?. It vanishes if and only if € Homp(F,G) C Homgz(F.G). If (A;{d.}) is
the coboundary of ¥, the lift of © to a homomorphism over R is given by ¢ —g .
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Proof. — Applying ¢ to the left hand side of the associativity law for F'

(3.8) X4+ YV)V4+pZ=X+r (Y +r 2)

and using the definition of A, we get

(3.9) o(X)+c oY) +co(Z) +c AX,Y) +a A(X +r Y, Z).

Applying ¢ to the right hand side of (3.8), we get

(3.10) o(X) +c p(Y) +c o(Z) +c AX,Y +r Z) +c A(Y, Z).

From (3.10) and (3.9) we obtain

(3.11) AX, )+ AX +r Y, Z2) = AX,)Y +r Z) +¢ A(Y, Z).

Using the assumption m - I = 0, we see that (3.11) implies the second cocycle rule
(3.12) AX Y+ AX +5, Y, 2) = AX,)Y +5, Z2)+ AY, Z).

The other cocycle rules are proved in a similar manner, replacing (3.8) by the com-
mutativity resp. the distributivity law of F'. This proves 1.

Part 2 of the proposition is a straightforward consequence of the definition of
(A; {6.}). To prove 3., we continue with the notation used in the proof of 1. Let
¢©'(X) be another lift of g, and let (A’; {d}) be the cocycle it defines. We can write
¢ = +g 1, with ¢ € I[[X]]. Then

¢'([m]p (X)) = [7]a(p(X)) +a 0=(X) +¢ ¢([x]r (X))
= [7la(¢' (X)) +¢ (6x(X) +¢ (7] r (X))

For the second equality we have used that /m = 0. We conclude that §/.(X)—d,(X) =
Y([7] (X)) is the m-component of the coboundary of ¢». Then Lemma 3.1 implies that
the two cocycles differ by the coboundary of 1. Hence (A; {d,}) and (A’; {d,}) lie in
the same class in H2(Fp, I). It follows from 2. that this class vanishes if and only if
@ € Hompg(F,G). This completes the proof of 3. and the proposition. O

Lemma 3.3. In the setting of Proposition 3.2 let (F,~) be a lift of Fy to R and let
F be the reduction to R.

1. Proposition 3.2 defines a bijection between deformations of ' to R and cocycles
in Z%(Fo,I). Its inverse is given by assigning to (A;{d.}) the deformation
FAX.Y)=X+rY +r A(X,Y) and vs(a) = v(a) +F da.

2. Two cocycles are in the same cohomology class if and only if the corresponding
deformations are isomorphic via an isomorphism which lifts the identity of F.

Proof. — For the first assertion we have to check that (Fa,~s) is a formal module.
From I? = 0 we obtain that the equations (3.1) to (3.5) also hold with F' replaced by
Fa. These equations immediately imply that (Fa,~s) is a formal module. For Fa, F'
and ¢ = X we obtain the cocycle (A, {d,}). Then the second assertion follows from
Proposition 3.2, 3. O

Corollary 3.4. — Let Iy, R, and I be as above with char(R) = p, ht(Fy) = h, and
(8 18,)) € Z2(Fo. I).
1. Let g < h. Then 6-(X) =0 (mod X% 1) if and only if &, € I[[X?]).
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2. The following are equivalent:
(a) The cocycle (A;{d.}) is the coboundary of some ¥(X) € I[X]].
(b) o, € I[[X9"]).
(¢) Let (F,7) be alift of Fy to a formal Ok -module over R. Then the identity

of I lifts to an isomorphism between (F,~) and (Fa,s)-
If these conditions are satisfied, (A;{04}) is the coboundary of ) = do 3~ where

d(XQ") = 6.(X) and /j(th') = [7]r, (X).

Proof. — If 6,(X) =0 (mod X%’ '*1) then
[l (X) = 62(X) 4r [w](X) =0 (mod (X 741)),

thus ht(Fa) > g — 1. This shows that §,(X) = [7]p, (X) —F [7]r(X) is a power
series in X9°. The other assertion of 1. is trivial. The equivalence of (a) and (c) of 2.
follows from Lemma 3.3. From Lemma 3.1 we see that (A;{5,}) = (AY;{6V}) for
some ¢ if and only if 6, (X) = 6% (X) = (7] r(X)) = ¥([7]r, (X)). Here the last two
equations follow from Im = 0. As ht(Fy) = h, this implies (b). On the other hand
assume (b) and let d(X7") = 6-(X) and B(X?") = [r]p, (X). Then the 7-component
of the coboundary of ¢ = do 37! is &5. O

Let O} be the completion of the maximal unramified extension of Of. Denote
by O [[t]] = O¥ [[t1, - . .. tn—1]] the power series ring over O in h — 1 variables. Let

k= 0w /().

Lemma 3.5. — Let (F,vp) be a normal Ok -module over k of height h < oo. Then
there exists a formal Og-module (T,7) over Ow|[[t]] which over k reduces to F
with the following property: For 1 < i < h — 1 denote by (I';,7:) the reduction to
@Tf(r[[t”/(h, ooy ti—l)- Then

(3.13) v(m)(X) = 71X + ;X7 (mod deg(q' + 1)).

Proof. — The module F corresponds to a map @ : Ao, = Oklg1,92,-..] — k with
gi— 0 forall i < ¢" —1. Let ¢ : Ao, — O be a lift with the same property. We
choose

ot =g —Twithl <<t
g o(gi) else.

Let T be the formal Ox-module corresponding to the map Ao, — O [[t] which
maps g; to f;. Then for (I';,v;) we see that g,y is the first generator which is
mapped to a nonzero element in O [[t]]/(t1, ..., t;_1). From the description of ]\?9';1
in the proof of Theorem 1.4 we see that ~;(7)(X) has the desired form. O

Note that a proof of this result can also be found in [GH, Section 12].

Let (F,~vr) be a normal formal Og-module of height h < oo over k. Let (I',y) be
the deformation over O%[[t]] defined in Lemma 3.5. Let (I',4%) be the reduction of
(T',7) to k[[t:]]/(t:)* = R; and let (F,vr)r, be the base change of (F,vyr) to R;.
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Proposition 3.6. — For F as above we have dimy, H?(F, k) = h — 1. The cocycles
(A% {6L}) associated to the pairs of deformations (F,vyp)gr, and (I',~y") with values
in t;R; = k satisfy

(3.14) 5L =X (mod degq' +1).
Their classes form a basis for H*(F, k).

Proof. — Equation (3.14) immediately follows from (3.13). Corollary 3.4, 2. shows
that the m-components of coboundaries are power series in X " Thus (3.14) implies
that the classes of the cocycles (A% {d%}) are linearly independent in H2(F, k). Let
(A;{6,}) € H?*(F, k). Then by Corollary 3.4, 1., 6, is of the form B(X?") with
3'(0) # 0. If g < h we subtract a suitable multiple of (A9 {¢¢}) to annihilate the
coefficient of X°. In this way we can inductively represent the cocycle (A;{5,}) as a
linear combination of the (A%;{§.}) plus a cocycle whose m-component is congruent
to 0 modulo X' '+1. Hence by Corollary 3.4, the cohomology class is a linear
combination of the classes of the (A% {6}). O

Definition 3.7. — Let R be a local ring with maximal ideal m. For a power series f
with coefficients in R let f* be the reduction modulo m. A x-isomorphism between
Og-modules F,G over R is an isomorphism ¢ € Hompg(F,G) with ¢*(X) = X.

Let F be a fixed Og-module of height h < oc over k = O% /(7). We consider
the functor Dr which assigns to each complete local noetherian @Z"-algebra R with
residue field & and maximal ideal m the set of x-isomorphism classes of formal Og-
modules over R that modulo m reduce to F'.

Theorem 3.8 (Universal deformation). — Let (F,vr) be an Og-module over k of
height h < 0o. Then Dp is represented by O [[t]].

Proof. — As k is separably closed, Lemma 2.5 shows that we may assume (F,~vp) to
be normal. Let (T',~) be the deformation over O%7 [[t]] of Lemma 3.5. Let (®,vq) €
Dp(R) for some complete local noetherian O -algebra R with residue field & and
maximal ideal m. As R is complete, it is enough to show that for each r € N the
following holds: If the projection ®, of ® to R/m" corresponds to a homomorphism
@r : O[] — R/m", then there is a unique lift ¢, .1 : O [[t]] — R/m" ! of o,
corresponding to @, .

Let ¢ be any lift of ¢, to R/m"T[[X]]. Then the pair of deformations ¢(T',7),
(®r41,78,,,) corresponds to an element of H?(F,m"/m"*!), hence to a uniquely
defined linear combination of the A" with coefficients a; in m”/m"™*1. Let ¢, 41(t;) =
(t;) + a;. Then by Corollary 3.4, the deformations ®,11 and ¢,4+1(I', ) of F over
R/m"*! are isomorphic via an isomorphism which lifts the given isomorphism over
R/m". As the classes of the A’ are linearly independent, ¢, is unique. O
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8. CANONICAL AND QUASI-CANONICAL LIFTINGS

by

Stefan Wewers

Abstract. — The present note gives a detailed account of the paper of Gross on
canonical and quasi-canonical liftings. These are liftings of formal O-modules with
extra endomorphisms, and thus correspond to CM-points in the universal deformation
space.

Résumé (Relevements canoniques et quasi-canoniques). — Nous donnons un exposé dé-
taillé des travaux de Gross sur les relevements canoniques et quasi-canoniques des
O-modules formels, qui correspondent aux points CM dans ’espace de déformations
universel.

The present note gives a detailed account of Gross’ paper [G] on canonical and
quasi-canonical liftings. We make heavy use of results of Lubin and Tate [LT2] and
Drinfeld [D] which are reviewed in [VZ]. All the results presented here have been
generalized to the case of arbitrary finite height by J. K. Yu [Yu].

I thank Eva Viehmann, Inken Vollaard and Michael Rapoport for careful proof-
reading and helpful discussions.

1. Canonical lifts

In this section we study canonical lifts of a formal Og-module of height two with
respect to a quadratic extension L/K. In particular, we prove the first main result
of [G] which computes the endomorphism ring of the reduction of a canonical lift
modulo some power of the prime ideal of Ok.

2000 Mathematics Subject Classification. — 14105, 14K22.
Key words and phrases. — Formal O-modules, canonical liftings, Lubin-Tate theory.
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1.1. Throughout this note, K denotes a field which is complete with respect to a
discrete valuation v, and whose residue class field is finite, with ¢ = p/ elements. We
denote by Ok the ring of integers of K. We fix a prime element m of K, and we
assume that v(mw) = 1.

Let i : Ox — R be an Og-algebra. Recall that a formal Og-module over R
is given by a commutative formal group law F(X,Y) = X +Y 4+ --- € R[X,Y]
together with a ring homomorphism v : O — Endg(F') such that the induced map
Ok — Endg(LieF) 2 R is equal to the structure map i. Whenever this is not likely
to be confusing, we will omit the maps ¢ and ~ from the notation. Given an clement
a € Ok, we write [a]p(X) = i(a) X +- - - € R[X] for the corresponding endomorphism
of F.

It F, Iy are two formal Og-modules over R, we write Homp(Fy, F») for the
group of homomorphisms « : F; — Fy of formal Og-modules, i.e., Ok-linear ho-
momorphisms of formal groups. Similarly, Endr(F) denotes the (in general non-
commutative) ring of Og-linear endomorphisms of F'. Note that Endg(F) is an Og-
algebra.

1.2. Let k£ be an algebraic closure of the residue class field of Ox. We regard k as
an Og-algebra, and write a € k for the image of an element a € Ok.

Let G be a formal Ox-module over k and let o € k[ X] be an endomorphism of
G, with o # 0. By [VZ, Lemma 2.1], there exists an integer h = ht(«) > 0, called
the height of «, such that o(X) = [}(X"h), with #/(0) # 0. It is easy to check that
the function ht : Endp(G) — Z>o U {oc} (we set ht(0) := 00) is a valuation on the
O -algebra End,(G). We say that the formal Ox-module G has height h, if the
endomorphism [7]¢ has height h. In other words, the restriction of the valuation ht
via the structure map O — Endy(G) is equal to ™1 - v.

We recall the following fundamental result.

Theorem 1.1. For each natural number h, there exists a formal Ok -module G over
k of height h. It is unique up to isomorphism. The ring Endy(G) is isomorphic to the
mazimal order Op of a division algebra D of dimension h? over K, with invariant
inv(D) =1/h.

Proof. — (Compare with [D], Proposition 1.7.) The existence of G follows from
Lubin-Tate theory, as follows. Let L/K be the unramified extension of degree h.
Extend the algebra map Og — k to Op, which gives k the structure of an Op-
algebra. Let F' be the Lubin-Tate module of O with respect to the prime element 7,
i.e., the (unique) formal Op-module over Oy, such that [7]p = 7X + X" see [LT1].
By restriction, we may regard F' as a formal Og-module. Then G := F®k is a formal
O g-module of height h over k.
The uniqueness of G is more difficult. See e.g. [H, Theorem 21.9.1].
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Let us sketch a proof of the last statement of Theorem 1.1. Set H := Endg(G).
We may assume that G is the reduction to k of the Lubin-Tate module for O,
where L/K is unramified of degree h. Since the natural map Op = End(F) — H is
injective (see [VZ, Lemma 2.6]), we have O, C H. By construction, the group law
G(X,Y)=X+Y +... and the endomorphisms [a]¢(X) =aX +..., for a € Ok, are
power series with coefficients in F,. Moreover, we have [7]¢(X) = X 4" Hence the
polynomial TI(X) := X9 defines an element 11 € H with II" = 7. One checks that

(la]e (X)) = [a”]e(TL(X)),

where o € Gal(L/K) is the Frobenius. From there, it is easy to see that the subalgebra
Op := O[] of H is the maximal order of a division algebra D of dimension h? over
K, with invariant 1/h. It remains to be shown that Op = H.

Let a(X) = aX +... be an element of H. Since o commutes with [7]¢(X) = X"
the coefficients of « lie in Fyn = Op/7Op. Let a € Oy, be a lift of a. Then o — la]e
is an endomorphism of G with positive height, and therefore lies in the left ideal
H -II ¢ H. We have shown that the natural map

Op — H/(H-T)

is surjective. Now the desired equality Op = H follows from the fact (which is easy
to prove) that H is complete with respect to the II-adic topology. O

1.3. For the rest of this note, we fix a formal Ogx-module G of height two over k.
By Theorem 1.1, G is uniquely determined, up to isomorphism, and Op := Endg(G)
is the maximal order in a quaternion division algebra D over K with invariant 1/2.

Let L/K be a quadratic extension. Let 7 denote a prime clement of L. By [S,
§XIII1.3, Corollaire 3], there exists a K-linear embedding x : L < D. It is unique
up to conjugation by elements of D*. We choose one such embedding and consider
L, from now on, as a subfield of D. Note that Oy € Op. Via this last embedding,
we may regard G as a formal Op-module over k. In particular, we obtain a map
O, — End(Lie G) = k, which extends the canonical morphism Ok — k.

Let A be the strict completion of Oy, with respect to k. In other words, A is the
completion of the maximal unramified extension of O, together with a morphism
A — k extending the morphism O — k.

Definition 1.2. — A canonical lift of G with respect to the embedding x: L — D is a
lift F' of G over A in the category of Op-modules.

In more detail, a canonical lift is a formal Og-module F' over A, together with
an isomorphism of Ox-modules A : F @ k = G and an isomorphism of Og-algebras
v : Op = End(F), such that the following holds. First, the composition of v with the
regular representation End(F) — End(Lie F') = A is the canonical inclusion Op C A.
Second, the composition of v with the inclusion End(F) — End(G) = Op induced
by A is equal to k. Note that v is uniquely determined by the lift F' and the first
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condition. We will omit it from our notation and simply write [a]F : F — F for the
endomorphism y(a). Also, the fixed embedding x will mostly be understood, and we
write [a]g : G — G for the endomorphism «(a).

Since G has height one as an Op-module, it follows from [VZ, Theorem 3.8], that
a canonical lift F' is uniquely determined, up to s-isomorphism, by the embedding
k. On the other hand, using Lubin-Tate theory and the uniqueness statement of
Theorem 1.1, we also conclude that a canonical lift F' exists, for any choice of k. So
it is justified to speak about the canonical lift F' of G, with respect to k. By choosing
a suitable parameter X for F', we may always assume that

2/c
(mLlp(X) =m X + X7,
where e is the ramification index of the extension L/K.
1.4. Let F be the canonical lift of G over A, with respect to a fixed embedding
k: L — D. For any positive integer n, we set
A, = A/t A, F,:=F®a Ay, H, :=Endy, (F,).

Since Oy, C H, for all n, we may consider the rings H,, as left Op-modules. We have
a sequence of Op-linear maps, which are injective by [VZ, Lemma 2.6]:

H,— H, 1 — ---— Hy =0Op.
We shall consider H,, as an Op-submodules of Op. Since A is complete, we have
Np>oH, = Oy.
By [VZ, Proposition 3.2], we have an injective map
H, 1/H, — H*(G,M,),
where M,, = (77)/(7} ).
Lemma 1.3. Fizn > 1 and let o be an element of H,—1 — H,,. Then [rp]coa €
H, — H,+1. In other words, multiplication with w;, induces an injective homomor-

phism of Or-modules
Hn—l/Hn — Hn/Hn+1'

Proof. We may represent o by a power series a(X) € A[X], without constant
coefficient, whose reduction modulo 7} is an endomorphism of F,,_;. We write a,
for the reduction of o modulo 772”1‘ Set

€:= O [ﬂ']p —F [T(]FO(L

Since a1 is an endomorphism of F;,_1, we have ¢ = 0 (mod 7}). Moreover, if
(A, {6.}) € Z%(G, M,,) denotes the cocycle associated to ay, by [VZ, Proposition 3.2],
then we have

e=6, (mod7}™).
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By assumption, the endomorphism «,, 1 of F,,_; cannot be lifted to an endomorphism
of F,,. Therefore, Corollary 3.4 of [VZ] shows that e(X) = ¢X? + ..., with ¢ €

(m7) — (7T2+1 .
Set

¢ = [mLlroaolnlr —p [r]pomL]roa.

Since [mp]F is an endomorphism of F, we actually have ¢ = [r]p o e. Using our
assumption [7]|p(X) = 7. X + X7 and the congruence ¢ = 0 (mod 7}), we see
that

d =mpeX94 =0 (mod 7}t

By [VZ, Corollary 3.4], this implies that [7;]p © @, is an endomorphism of F,,
i.e., [rL] o a € H,. Moreover, if (A", {0,}) € Z*(G,M,+1) denotes the cocycle
associated to [7L] o @41, then we have

¢ =0, (mod 7}"?).

Since mpc € (71'2+l) - (7T'LL+2), Corollary 3.4 of [VZ] shows that [7]F © «,, cannot be
lifted to an endomorphism of F,,. This means that [rp] o« & Hyy;. O

We can now prove the main result of this section (Proposition 3.3 in [G]).
Theorem 1.4. - Forn > 1 we have H,, = O, + 7} Op.

Proof. — Each group H,, is a submodule of the free rank-two Op-module Op and
contains the direct factor O C Op. Therefore, the quotients H,_1/H,, are cyclic
Op-modules. By Lemma 1.3, these quotients are killed by 7. Hence H,,_/H, is
either 0 or isomorphic to O, /7, Or. We claim that only the second case occurs. The
case n = 1 is dealt with in the following lemma.

Lemma 1.5. — We have Hy # Hy = Op.

We will prove this lemma in the next subsection. Lemma 1.3 says that left multi-
plication with 7, induces an injective map H,,—1/H, — H,/H,11. So by induction
on n, Lemma 1.5 and the arguments preceding it show that H,/H,+1 = O /7, 0L
for all n and that Op/H, is an Op-module of length n, killed by 7}. The theorem
follows immediately. O

1.5. We are now going to prove Lemma 1.5. We distinguish two cases.
Case 1: L/K is unramified. In this case, we may assume that 7y = 7 and hence
[7lp =7X + X7 Then
Op=0,60; 11,
where IT = X9, see the proof of Theorem 1.1. Let v = >7,5 a; X" € Ai[X] be a
lift of TT with leading term X9. Let (A,{d,}) € Z*(G, M;) be the cocycle associated
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to «. Using Taylor expansion, we see that
0x(X) = al[7]r, (X)) =, [7]p (X))
= (a(XT) + 7o/ (XT)X) —p, (7a(X) +a(X)7)
=-—7X94+---£0.
(Here we use the notation o' := da/9X.) Therefore, by [VZ, Corollary 3.4], we have
I1¢ Hy.
Case 2: L/K is ramified. Then 7y, satisfies an Eisenstein equation over Ok, which
we may normalize to
T +ar, + 7 =0,
with @ € 7Ok . Assuming, as usual, that [r.]r = 7, X + X% a short computation
yields the congruence
(1.1) [mp(X) = —m X1 X 4 (mod 7).
Let j € Op be an element which generates an unramified quadratic extension of K.
We may assume that j(X) =uX +..., where u € k generates the quadratic extension
of the residue class field of O. Lift j to a power series a(X) = uX + -+ € A [X]
modulo 7, and let (A, {d.}) € Z%(G, M;) be the associated cocycle. Then ud # u
(mod 7). Using the congruence (1.1), we compute
(sﬂ'(X) = a([ﬂ-]Fl (X)) R [W]Fl (Q(X))
= (u(=m X = X)) —p (= 7a(X)? — a(X)"
=7(u? —u) X9+ ...

2

)

As in Case 1, we use [VZ, Corollary 3.4], to conclude that j ¢ H;.

2. Isogenies and Tate modules

In this section we review the connection between the endomorphism ring and the
isogeny classes of a formal Og-module on the one hand, and lattices inside the Tate
module on the other hand. These results will be used in the following section on
quasi-canonical lifts.

2.1. Asin the previous sections, K denotes a field which is complete with respect to
a discrete valuation and has a finite residue field of order ¢ = pf. We let k denote an
algebraic closure of the residue field of K. Furthermore, A is a flat local Og-algebra
which is a complete discrete valuation ring with residue field &, and M is the fraction
field of A. We fix an algebraic closure M of M.

Let F" be a formal Og-module of finite height h over A (not necessarily a canonical
lift). We write

A(F) := F(M)ior = U F "]
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for the torsion subgroup of F' and

T(F) := lim F[r"]
for the Tate module of F. These are Ox-modules with a continuous, O -linear action
of Gal(M /M). As Ok-modules, we have non-canonical isomorphisms

A(F) = (K/Og)", T(F)= O

Set V(F) := T(F) ®o, K; then we have a canonical short exact sequence of
Gal(M /M )-O g-modules
(2.1) 0— T(F) — V(F) — A(F) — 0.

Let A’ be a finite extension of A, and let F' be a formal Og-module over A’. An
isogeny between F and F’ defined over A’ is a nonzero homomorphism a: F®@4 A’ —
F' of formal O-modules. If such an isogeny exists, then we say that F” is isogenous
to F' (over A"). For simplicity, we shall write o : ' — F’, and consider a as a power
series in 0,7 [[X] whose coefficients generate a finite extension of A. We say that « is
defined over A’ if o € A'[ X].

Given an isogeny « : F — F’, we obtain a diagram

(2.2) 0 0 N
0 T(F) V(F) A(F) 0
T () ~ | V(a) Ala)
0 T(F") V(F") A(F") 0
Coker T'(a) 0 0

with exact rows and columns. Note that N is equal to the kernel of «; it is a finite
Ok -submodule. A trivial version of the snake lemma shows that we have a canonical
isomorphism N = Coker T'(«v).

The following theorem states that every finite Ok -submodule of A(F) arises as the
kernel of an isogeny. More precisely:

Theorem 2.1. — Let N C A(F) be a finite Ok -submodule, I'" C T the stabilizer of N,
M' C M the fized field of T" and A’ the valuation ring of M'. Then the formula
a(X) = [[ (X —r2) e A[X]
zEN
defines an isogeny o : F' — F' over A’. It has the following properties.
1. Ker(a) = N.
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2. Let B: F — F” be an isogeny with N C Ker(3). Then there exists a unique
isogeny v : F' — F" with 3 =~ o a.

Proof. — See [H, §35.2]. O

2.2. It will be more convenient for us to reformulate Theorem 2.1 in terms of lattices
T C V(F) (instead of finite subgroups N C A(F)). Let F be a formal Ox-module
of finite height over A. Set T':= T'(F') and V := V(F).

Corollary2.2. — 1. Let T C V be an Og-lattice containing the lattice T
(a superlattice).  Then there exists an isogeny o : F — F' such that
T' = V(a) YT (F"). If T" is a superlattice of T' and 3 : F — F" an isogeny
with T" = V(3) YT (F")), then there exists a unique isogeny v : ' — F" such
that B = v o a.

2. Let T' C T be an Ok -sublattice. Then there exists an isogeny o : F' — F such
that T' = Im(T(«v)). If T C T’ is another sublattice, and 3 : F" — F is an
isogeny such that T" = Im(T(B)), then there exists a unique isogeny vy : F"' — F’
with § = a o~.

Proof. — Given T’ asin Part 1, weset N := T’ /T. Via the short exact sequence (2.1),
we consider N as a (finite) Og-submodule of V. Let o : F — F’ be the isogeny
with kernel N, which exists by Theorem 2.1.1. Then the diagram (2.2) shows that
T' = V(a) Y(T(F’)). This proves the first assertion in Part 1. The second assertion
follows from Theorem 2.1.2.

We are now going to prove Part 2 of the corollary. Let 77 C T be a sublattice.
Choose an integer n such that #*T C T’. By Part 1 of the corollary, there exists an
isogeny 3 : F' — F’ such that V(38) "' (T(F’)) = 7~ "T'. The kernel of /3 is isomorphic
to 7~ "T’/T, which is an Og-module killed by n™. Therefore, Theorem 2.1.2 shows
that there exists an isogeny « : F/ — F with «o 3 = [7"]p. By construction, we have

Im(T(a)) =" - V(B)" YT (F)) =T

This proves the first assertion of Part 2. The proof of the second assertion is left to
the reader. O

2.3. Let F, T and V be as before. The faithful representation of End(F) on V
extends to a faithful representation

End’(F) := End(F) ®0, K — Endg (V).

We will from now on consider elements of End’(F) as elements of Endg (V).

Let T",T"” be Og-superlattices of T inside V. Let o : FF — F' and 3 : F — F”
be the corresponding isogenies, as in Corollary 2.2.1. We identify V(F’) and V(F")
with V, via the isomorphisms V() and V(3). Then 77 = T(F’) and T" = T(F").
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Corollary 2.3. — The map which sends a homomorphism v : F' — F" to the induced
endomorphism v : V 2 V(F') — V(F") 2V is a bijection

Hom(F',F") = {¢ € End°(F) | ¢(T") c T"}.

Proof. — Let ¢ : F' — F” be a homomorphism and = Endg (V) the induced
endomorphism of V. By definition, we have ¢)(T”) C T”. We have to show that 1 €
EndO(F ). Set y:=1¢oa:F — F’. The isogeny « corresponds, via Corollary 2.2.2,
to the sublattice ¢)(T") € T”. From the same point of view, the isogeny 3 : F — F”
corresponds to the sublattice T C T”. Choose an integer n such that 77"7,/~J(T) cT.
Then by Corollary 2.2.2, there exists an endomorphism ¢ : F' — F such that fo ¢ =
v o [7"]p. One checks that ¢ = 7", as elements of Endg(V), which shows that
¥ € End’(F).

Conversely, let ¢ be an element of End’(F) C Endg (V) with ’(/;(T’) c T”. By
definition, we can write 1) = 7~ "¢ for some endomorphism ¢ : F — F. The isogeny
ao[r™]F : F — F' (resp. the isogeny So¢ : F' — F") corresponds, via Corollary 2.2.1,
to the superlattice 77" O T (resp. the superlattice ¢~ *(7") D T'). The assumption
O(T') C T” together with ¢ = 7~ "¢ implies 7 T’ C ¢~ (T"). Therefore, by
Corollary 2.2.1, there exists an isogeny ¢ : F/ — F" with ¢po o [7"]|p = B0 ¢. By
construction, v is the image of ¢/ under the embedding Hom(F', ") — Endg (V).
This concludes the proof of the corollary. O

3. Quasi-canonical lifts

A quasi-canonical lift is a lift whose endomorphism ring is an order in a quadratic
extension L/K . In this section we show that every quasi-canonical lift is isogenous to
a canonical lift, and we determine the set of isomorphism classes of all quasi-canonical
lifts together with its natural Galois action.

3.1. We now come back to the situation of Section 1. In particular, G is the (unique)
formal Og-module of height two over k. We fix a quadratic extension L/K, an O-
linear embedding « : O < Op := Endg(G). We denote by F' the canonical lift of G
with respect to x. Recall that F' is defined over A, the strict completion of O, with
respect to the map Ok — k induced by the Op-action on Lie(G).

Let M denote the fraction field of A, M an algebraic closure of M and I' :=
Gal(M/M). Welet T := T(F) denote the Tate-module of F and V := T®¢, K. Note
that T has the structure of a free Oy -module of rank one, and that the I'-action on
T is continuous and Op-linear. By Lubin-Tate theory, the resulting homomorphism

(3.1) p: T =Gal(M/M) — Of

yields an isomorphism I'*" 5 OF. Identifying T' with the inertia subgroup
of Gal(L/L), the homomorphism (3.1) is the inverse of the reciprocity map
L* — Gal(L/L)* of local class field theory, restricted to Of . See [LT1].
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Fix an integer s > 0. Let
O, =0 +0-7°

denote the order of Op generated by Ok and the ideal Op - 7. It is easy to see
that every order of Of, containing Ok is equal to Oy, for some s. Let M,/M be the
ring class field of O, i.e., the fixed field of the subgroup I's C T', where T’y is the
inverse image of O C O] under the inverse reciprocity homomorphism (3.1). In
other words, we have

Gal(M,/M) = OF JOX.

An easy computation shows that, for s > 1,

—1 . . .

s +1), if L/K is unramified
M, M) =ogjox = § ¢t ’
[ J=l0L/0:] { q°, if L/K is ramified.

Definition 3.1. — A quasi-canonical lift of G of level s (with respect to the embedding
k: O — Op)isalift F of G, defined over some finite extension A’ /A, together with
an Og-algebra isomorphism ~ : Oy = End(F”), such that the following holds.
1. The composition of v with the representation End(F’) — End(Lie F') = A’ is
the canonical embedding Oy — A’.
2. The composition of v with the embedding End(F’) — Op is equal to the
restriction of kK to Oy C Of,.

To ease the notation, we will usually omit the isomorphism ~ and the embedding
x from our notation. Note that a quasi-canonical lift of level 0 is the same thing as a
canonical lift (which exists and is unique). For general s, we have the following result.

Theorem 3.2. Let Opy. denote the ring of integers of M.

1. Let F' be a quasi-canonical lift of level s. Then there exists an isogeny
a: F— F’

of degree ¢°, defined over Opy, . It is unique up to composing « with an element
of Aut(F) = Of . In particular, F' can be defined over Oy, .

2. The set of x-isomorphism classes of all quasi-canonical lifts of level s is a prin-
cipal homogeneous space under the action of Gal(My/M).

Remark 3.3. — The proof of this theorem will show that the action of Gal(M;/M) on
the set of *-isomorphism classes can be described as follows. Let (F', X) be a quasi-
canonical lift of level s (with A : F/ @ k = @), and 7 € . Then the lift (F’,\)7 is
#-isomorphic to the lift (F”, [p(0)~1]g o A). Therefore, by Theorem 3.2.2, two quasi-
canonical lifts of the same level are always isomorphic as formal O g-modules.
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3.2. Let a: F — F' and 8 : F — F” be two isogenies with source F. We say
that o and 3 are isomorphic if there exists an isomorphism of formal Og-modules
v F' 5 F" with 8 =voa.

Fix an isogeny a : F — F’. To simplify the notation, we will identify V(F’)
with V wvia the isomorphism V(a). Then, by Corollary 2.2.1, « corresponds, up to
isomorphism, to an Og-superlattice 7/ > T in V. Moreover, by Corollary 2.3, «
induces an isomorphism of Og-algebras

(3.2) End(F') =5 {¢pe L=End"(F)|o(T)CT}.
This exhibits End(F”) as an order of Op,.

Lemma 3.4. — Let T be a free Or-module of rank one, V :=T Qo, K. Let T' DT
be an Oy -superlattice in V. Then there exists a generator t of T (ie., T = Oy, -t)
and integers n,s > 0 such that

Ty T = (O -7 %+ 0p)-t.
Moreover, the multiplicator O of T' is equal to the order O, C Op.
Proof. — For T" D T as in Part 1, define
n:=max{n' | 7} T > T}, s:=min{s' | 7% 7} T C T}

Then 7} T'/T is a cyclic Og-module, generated by an element of the form =%t
Moreover, any t with this property is a generator of T. It follows that n}7T’ =
(O -7 5+0)-t. The proof of the fact that O is the multiplicator of 7" is standard
and left to the reader. O

A superlattice T’ D T is called minimal of level s if T' = (O -7~ 5+0Op)-t, for some
generator ¢ of T. The corresponding isogenies v : ' — F’ are also called minimal of
level s. We let X denote the set of isomorphism classes of minimal isogenies of level
s. The Galois group I' acts on Xy, in a natural way. There is also an action of O}
on X, given by composing a : F — F’ with the automorphism [a]p : F = F, for
aeOf.

Proposition 3.5. — The actions of I' and O] on X are anti-compatible via the reci-
procity homomorphism p : ' — Of , ie., for o € T there exists an isomorphism
Yo i (F")7 = F' such that the diagram

F_io; (F/)a

[p(a)*]Fl ba

«
F——F
commutes. Furthermore, X is a principal homogeneous space under the induced
action of Gal(My/M) = Of /OF.
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Proof. — 1f the isogeny « : F' — F' corresponds to the lattice T, then « o [alp :
F — F'. for a € Oy, corresponds to the lattice a=! - T’. Therefore, it follows
immediately from Lemma 3.4 that the action of OZ on X, is transitive, and the
stabilizer of each element is equal to OF. To see that this action is compatible with
the Galois action, fix an element o € I'. Clearly, the kernel of a” can be identified
with (T7/T)° = p(o)-T'/T. Since this is also the kernel of ao[p(c) 1], the existence
of v, follows from Theorem 2.1. The proposition is proved. O

Proof of Theorem 3.2. - We first prove Part 1 of the theorem. Let F’ be a quasi-
canonical lift of level 5. Set T := T(F’) and V' := T"®0,. K. The isomorphism Oy —
End(F’) extends to an isomorphism L = End”(F”), which gives V' the structure of
an L-vector space of dimension one and identifies O4 with the multiplicator of the
lattice TV C V.

Let T" C T’ be a maximal O -submodule of rank one. Then T" = (O -7~ 5+0Op )t
for some generator ¢ of T”, by Lemma 3.4. Let o« : F” — F’ be an isogeny with
Im(7 (o)) = T, see Corollary 2.2.2. By Corollary 2.3, a induces an isomorphism

End(F")={¢cEnd"(F)=L|a(T")=T"}=0Oy.

Therefore, F” = I as formal Ok-modules. Choosing an arbitrary isomorphism F’" =
F, we can regard o : F' = F” — F’ as an element of X,. Since O] acts transitively
on X, by Proposition 3.5, we have proved Part 1 of Theorem 3.2.

Now we prove Part 2 of the theorem. In view of Part 1 and Proposition 3.5, we
only need to show the following. For every minimal isogeny o : F' — F' of level s,
there exists an isomorphism A : F/ ® k = G which makes F’ a quasi-canonical lift.
For this, we may assume that the isogeny « is given, as a power series with coefficients
in Oy, by the formula of Theorem 2.1:

a(X) = H (X —p 7).

yeKer(a)

Here Ker(«) is simply considered as a subset of the maximal ideal of the ring of integers
of M. Therefore, the reduction of o to k is @(X) = X7 . By the proof of Theorem 1.1,
we may assume that II(X) := X7 is an endomorphism of G and lies in the normalizer
of O, = End(F') C Op. In particular, @ = I1* is an endomorphism of G. Therefore,
F' & k is actually equal to G. We define the isomorphism A : I/ @ k = G as the
identity and claim that (F’, \) is a quasi-canonical lift.

By construction, we have an isomorphism

(3.3) End(F)={¢e L=End"(F)|¢T")=T"}20O,.

Hence the image of the natural injection End(F’) — End(Lie F') = Oy, is an Og-
algebra isomorphic to Q. It must therefore be equal to O,. Let v : Oy = End(F’) be
the resulting isomorphism. Then Condition 1 of Definition 3.1 holds by construction.
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Let k' : Os — Op be the composition of v with the embedding End(F’) — Op
induced by the identification F/ ® k = G. We have to show that &’ is equal to
the restriction of k to Oy (see Condition 2 of Definition 3.1). Tracing back the
definitions, we see that £’ = (k|o,)® is the conjugate of k|o, by @ = II* € Op. Since
we assumed II to lie in the normalizer of the image of x, we have already proved
that ' and k|o, have the same image and are equal up to composition with an
element of Gal(L/K) = Z/2. However, if L/K is ramified, then the assumption that
IT normalizes Oy, already implies that IT € Op, and we get ' = k|, as desired.
Now assume that L/K is unramified. Then it suffices to show that ' and k|o,
agree modulo the maximal ideal Op - II. But this is a consequence of Condition 1 of
Definition 3.1. This concludes the proof of Theorem 3.2. O

4. Canonical subgroups

The main result of this section is Proposition 4.6 which computes the valuation of
the formal modulus of a quasi-canonical lift. The heart of the proof of this proposition
is the study of canonical subgroups and their behavior under isogenies. The relevance
of canonical subgroups was first pointed out in [L].

4.1. We continue with the notation used in the last section. In particular, A is
the completion of the maximal unramified extension of Oy, and M the fraction field
of A. We choose an algebraic closure M of M and let v : M — QU {oc} denote the
exponential rank-one valuation with v(m) = 1.

Let M'/M be some finite extension, and let A’ denote the valuation ring of M'.
Throughout this section, we will implicitly assume that the extension M'/M is ‘suf-
ficiently large’. In practice this will mean that sometimes we have to enlarge M’ in
order to make certain torsion points M’-rational.

For the moment, we fix an arbitrary lift F' of the formal Og-module G, defined
over A’ (not necessarily the canonical lift). By [VZ, Theorem 3.8], F' is isomorphic to
the pullback of the universal deformation F of G via a unique @}?'-algebra morphism
R"MY — A, Moreover, R can be written as a power series algebra @%[[u]] (The
proof of this result in [VZ] does not provide us with a natural choice of the parameter
u, but this is irrelevant for us by Remark 4.2 below. See [HG] for a more explicit
choice of the parameter u.)

Definition 4.1. The image of the parameter u under the morphism R"™V — A’
corresponding to F' is denoted by w(F') and is called the formal modulus of the lift F.
The rational number v(F) := min{v(u(F)), 1} is called the valuation of F.

Remark 4.2. — 1t is clear that the valuation v(F') is actually independent of the choice
of the parameter u. Therefore, v(F') depends only on the isomorphism class of F' as
a formal Og-module, and not on the chosen isomorphism A : F @ k = G. Indeed,
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a unit v € O induces an automorphism 5 of the universal deformation space of G
(which sends the pair (F,\) to the pair (F,~v o A)). Applying the automorphism 4
amounts to replacing the parameter u by v’ := §*u.
Definition 4.3. — A sub-Og-module H C F[x] of length one is called a canonical
subgroup if

v(x) > v(y)
forallz € H and y € Fir] — H.

Note that a canonical subgroup, if it exists, is unique. We may therefore speak
about the canonical subgroup of F'. The two last definitions are related to each other
in the following manner.

Proposition 4.4
L. Write [7]p =Y.~y a; X', with a; € A’. Then v(F) = min{v(a,), 1}.
2. The lift F' has a canonical subgroup if and only if

q
v(F) < .
v(F) )
Proof. It follows from the proof of [VZ, Theorem 3.8], that we can choose for the

parameter u defining the isomorphism R™Y =~ O%[y] the gth coefficient of [r] B
where F' is the universal deformation of G. Therefore, Part 1 of the proposition is
a direct consequence of the definition of v(F'). Now Part 2 is easily seen by looking
at the Newton polygon of [r]p. Indeed, the slope filtration on the set F[r] — {0} is
also a filtration of Ox-modules. But as an Ok -module, I[r] has length two, so there
can be at most two finite negative slopes. Also. breaks occur only at i = 1,¢? and
possibly at i = ¢. Since v(a1) = 1 and v(a,2) = 0, we have a break at i = ¢ if and
only if v(F) < q/(q+1). O

4.2. Fix alift F' of G defined over A’ and a sub-Ok-module H C F[n] of length one.
Let o : ' — F’ be the isogeny with kernel H, defined by Theorem 2.1. Recall that «
is given by the power series
(4.1) afX) = H (X —p ).
xeH

Let us choose an isomorphism A : F' @ k = G. We will use )\ as an identification,
i.e., we will regard F’ as a lift of G. As in Section 3.2, one can choose X in such
a way that a ® k gets identified with the isogeny Il = X9 : G — G. However, this
choice is not at all canonical. In what follows, we are mainly interested in relating
the two valuations v(F') and v(F’). By Remark 4.2, the choice that we have made is
irrelevant for this problem.

Let 8 : F — F’ be the unique isogeny such that [7]p = #o«. Then H' := ker(3)
is equal to the image of F[r] under the isogeny «. Clearly, H' is an Og-module of
length one.
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Proposition 4.5

1. Suppose that H is the canonical subgroup of F'. There are two cases:
(a) Ifv(F) < % then v(F') = ¢ - v(F) and H' is not canonical.
(b) If% <w(F) < 75 thenv(F') = 1—v(F) and H' is the canonical subgroup
of F'.
2. Suppose that H is not the canonical subgroup of F'. Again we have two cases:
(a) Ifv(F) < q-(il-l then v(F') = ¢~ ' - v(F).

(b) Ifv(F) = 5 then o(F') =1/(q+1).

In both cases, H' is the canonical subgroup of F'.

Proof. — Suppose that H is canonical. By Proposition 4.4, we have v(F) < q/(q¢+1).
Moreover, the proof of this proposition shows that the Newton polygon of 7] has
exactly two finite negative slopes, namely
. _ 1—w(F) ()
S T

Here s; is the slope above the interval [1, ¢] and corresponds to the canonical subgroup,
whereas sy is the slope above [q, ¢?].

Pick an element y € F[r] — H; then v(y) = —s2 = v(F)/(¢> — q). It follows
from (4.1) that the element z := a(y) € H' has valuation

o) = X oly ) = - ol) = 2.

reH
Now if v(F) < 1/q then v(z) < 1/(¢*> — q). This means that —v(z) is equal to the
slope of the Newton polygon of [r]# above the interval [q, ¢%]. We conclude that

v(F') = (¢* — q) - v(z) = q- v(F)
and that H’ is not the canonical subgroup of F’. Ou the other hand, if v(F) > 1/q
then v(z) > 1/(q® — q). Therefore, v(z) is equal to the slope above the interval [1, q].
We conclude that
v(F)Y=1-(g—1) - v(F)=1—-v(F)
and that H’ is the canonical subgroup of F’. This finishes the proof of Case 1. The
proof of Case 2 is similar and left to the reader. O

4.3. Let us now assume that the lift F is the canonical lift of G with respect to some
fixed embedding k : L — D. Note that we have v(F) = 1 if L/K is unramified and
v(F) = 1/2 if L/K is ramified. In the former case, F' has no canonical subgroup,
whereas in the latter case the canonical subgroup of F' is the kernel of [, ]p.

For s = 1,2,..., we define isogeniecs as : F — Fj inductively, as follows. First,
choose a non-canonical Og-submodule H C F[r] of height one. Set F| := F/H and
let a; : F — Fj be the natural projection. For s > 1, choose a non-canonical Og-
submodule Hy C Fy[m| of height one, set Fyyq1 := Fs/H, and let agy1 : F — Fy 1 be
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the composition of as with the natural projection Fy — Fsy1. As we have seen in the
last section, we can see Fy as a lift of G in such a way that the isogeny «; reduces to
the endomorphism IT* : G — G modulo the maximal ideal of A’. This choice is by no
means canonical; however, for the statement of the next proposition, the choice that
we have made is irrelevant, see Remark 3.3 and Remark 4.2.

Proposition 4.6. The lift Fs is quasi-canonical of level s, and we have
1
—— ifL /K is unramified and s > 1,
v(Fy) = ¢~ g+1)
2% if L/K is ramified.

Proof. — We proceed by induction over s. We start the induction at s = 1 if L/K is
unramified and at s = 0 in the ramified case (one has to be careful with the notation:
plugging in s = 0 into Fy should be understood as F). If L/K is unramified, then
v(F)=1>q/(q+1), and Proposition 4.5, Case 2(b), shows that v(Fy) = 1/(q + 1).
This is indeed as in the statement of the proposition. The statement of the proposition
is also true for s = 0 if L/K is ramified.

Suppose now that s > 1 or that L/K is ramified. Then v(Fs) < q/(q + 1), so
Proposition 4.5, Case 2(a), shows that

v(Fy)
.

We see that the formula for v(Fy) follows by induction.

v(Fyi1) =

Since Fj is isogenous to F', it is a quasi-canonical lift of some level. By construction,
the isogeny ay : F' — Fy has degree ¢°. Let n be the maximal integer such that «
factors over [r}] : F — F. The proof of Theorem 3.2 shows that F is quasi-canonical
of level &' := s —2n/e.

Suppose n > 0. By the induction hypothesis, Fy is quasi-isogenous of level s’.
Therefore, by Remark 3.3, Fy and Fy are isomorphic as formal Ox-modules. But
then we have v(Fs) = v(Fy). This gives a contradiction with the formula for v(Fj)
which we have already proved. We conclude that n = 0, i.e., that Fy is quasi-canonical
of level s. O

Corollary 4.7. Let Fy be a quasi-canonical lift of level s and Ozy, /A be the smallest
extension over which it can be defined. Then the formal modulus uw(Fs) € O, of Fy
is a uniformizer for the valuation ring Oy, .

Proof. — Tt follows from Theorem 3.2 that Oy, is the ring of integers of the extension
M,/M, the ring class field of OF. Moreover, we may assume that Fy is the lift
constructed before Proposition 4.5. Therefore, the formula for v(Fy) in Proposition 4.5
shows that the valuation of u(Fj) is equal to the reciprocal of the degree [M, : M].
This concludes the proof. O
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Corollary 4.8. — Let Fs and Fsy1 be quasi-canonical lifts of level s and s+ 1, respec-
tively. Let 3 : F, — Fsy1 be an isogeny of height one. Then H := ker(3) is not the
canonical subgroup, and

o(Lic(8)) = v(Fus).

Proof. — We note that 3 identifies Fsy; with the quotient Fs/H. It follows from the
proof of Proposition 4.6 that H is not the canonical subgroup of Fys and that therefore
the nonzero elements x € H have valuation
v(z) = %l
q- —q
Set b := Lie(3). The formula for § in terms of H (see Theorem 2.1) shows that

v(b) = Z v(z) = U(i’)

xeH—{0} q

By Corollary 4.7, this is equal to v(Fs41). O

5. Some complements

We prove some technical results which are needed in [R].

5.1. Let K and k be as before. Let G be the formal Og-module of height two over
k, with endomorphism ring Op. We have seen in [VZ] that the formal cohomology
group H?(G, k) has dimension h — 1 = 1. Therefore, the universal deformation ring
of G is W(t]] (where W = O% is the completion of the maximal unramified extension
of OK)

Let A be a complete local Og-algebra with residue field & and I < A an ideal
with my - I = 0. Set A := A/I. Let F,F’ be two deformations of G over A and
a: F®A — F'®A a homomorphism which is defined modulo I. Then the obstruction
for lifting & to a homomorphism « : F — F’ is an element of the k-vector space

H?*(G,I)= H*(G,k) ® 1.

Indeed, as in [VZ, Section 3], a lift a(X) € A[X] of @ as a power series defines a
cocycle (A;d,),

Il

A(X,Y) : OC(X +F Y) — ()/(X) — Oz(Y),
da(X) := a(la]p (X)) = p [a]pr((X).

The cohomology class of this cocycle is independent of the chosen lift . It vanishes

if and only if there exists some lift o which is a homomorphism F' — F”. If this is the
case, then the lift which is a homomorphism is unique.

Let F be the universal deformation of G over W{t], and let F' be another universal
deformation over W{t']. Hence the pair (F, F’) is defined over the formal scheme
S = Spf R, where R := W|t,t'].
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Proposition 5.1. — Let o : G — G be an isogeny, i.e., « # 0. Let J be the minimal
ideal of R such that « lifts to an isogeny F — F' modulo J. Then the closed formal
subscheme T of § defined by J is a relative divisor over Spf W.

Proof. — We have to show that .J is generated by one element which is neither a unit
nor divisible by p. Suppose, for the moment, that o ¢ O andset L = K (o) C D. Let
M be the completion of the maximal unramified extension of L and F} the canonical
lift of G with respect to O, C Op (which is defined over Ops). There is a unique
homomorphism of Og-algebras ¢ : W[t,t']] — O which induces the identity on k,
such that the pair (Fy, Fy) is *-isomorphic to the pullback of the pair (F, F') via ¢.
By construction, J is contained in the kernel of ¢. This shows J # R, at least if
a &€ K. The case a € K is handled in a similar way.

Suppose that J C (7). This means that a lifts to an isogeny F — F’ over k[t,t'].
Setting ' = 0, the isogeny a would then induce an isogeny between F @y k((2))
and G @y k((t)). But F' @wpy k((t)) has height h — 1 =1 (see [VZ]) and is therefore
not isogenous to the height-two module G ®, k((¢)). This gives a contradiction and
shows that J ¢ (7).

Let m denote the maximal ideal of R. Set A := R/mJ and I := J/mJ. Then
m-1=0,and A = A/I = R/J. Clearly, « lifts to a homomorphism F® A — F' © A
but not to a homomorphism F® A — F'® A. The responsible obstruction is a nonzero
element in

H*(G,I)= H*(G, k)@ [ =1.
Let f be the image of this obstruction in /. The element f depends on the choice of
an isomorphism H?(G, k) = k, but the ideal (f) < A does not. Clearly, «a lifts to a
homomorphism F ® A" — F' @ A’ over the ring A’ = A/(f). This implies I = (f).
Now Nakayama’s Lemma shows that J is generated by one element. The proposition
is proved. O

5.2. Let A be the ring of integers of a finite extension of the fraction field of W. Let
A denote a uniformizer of A. For each positive integer n, we set A, := A/(A\"*!) and
M, = (A")/(A"H1).

Let Fy, I, F3 be three lifts of G over A. We define

H, :=Hom(F, ® A,,F, @ A,), H] :=Hom(F, ® A,,F;® A,).

As for endomorphisms, the natural reduction maps H,, H, — End(G) = Op are
injective. We will consider H,, and H/, as subsets of Op. Note that H,, and H), are in
fact sub-Og-modules of Op. The obstruction theory reviewed above gives injective
maps

tin : Hy 1/ H, — H*(G,M,), W HL | JH! — H*(G, M,).

Proposition 5.2. — Let o : G — G be an isogeny defined over k which does not lift
to a homomorphism Fy — F. Let n be the unique positive integer such that a €
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H, | — H,. Let 3 : Fy — F3 be an isogeny defined over A, and let m denote the
valuation of b := Lie(B) € A. We make the following assumptions:

1. 0 has height one.
2. m < (qg—1)n.
Then oo € H), ., — H,

n+m:-

Proof. — (compare with the proof of Lemma 1.3) We may represent o as a power
series with coefficients in A without constant coefficient such that «,,_1, the reduction
of o« modulo A", is a homomorphism F; ® A,,_1 — Fo ® A,_1. We define

e:=aolnlp —p [T]F 0.

Then ¢ = 0 (mod A*). Moreover, we have € = &, (mod A\"*'), where (A, {d.})
denotes the cocycle associated to a,,. The assumption o ¢ H,, implies (X ) = cX?+
..., with ordy(¢) = n. Similarly, define

€ :=pfoao[r]r —r [1]p0foa
Then ¢ = Boe. Write 3(X) = >, b:;X". It follows from Assumption 1 that the

Newton polygon of 3 has slope —m/(q — 1) over [1,...,¢]. This means that

q—1

ordy(b;) > -m, i=1,...,q

q—1
(with equality for i = 1,¢). Now Assumption 2, together with an easy calculation,
shows that

e = foe= bieX9+ .- =0 (/\’IL+’HL).

Since ordy(byc) = n + m, we conclude as in the proof of Lemma 1.3 that o« €
/ !
Hn,+m~l - H r+m: o

T

Corollary 5.3. Suppose that Iy, Fs, F3 are quasi-canonical liftings of G of level
r, 8,8+ 1 (with respect to some embedding k : L <— D). Suppose that r < s. Suppose,
moreover, that A is the minimal O -algebra over which the lifts Fy, Fs, F3 can be
defined. (By Theorem 3.2 and Corollary 4.7, A is the ring of integers of the ring class
extension of Og11.)

Let a : G — G be an element of Op and (3 : Fo — F3 an isogeny of height one,
defined over A. We assume that o does not lift to a homomorphism Fy — Fy. Let n
be the mazimal integer such that « can be lifted to a homomorphism Fy — Fy modulo
A", Then B o« can be lifted to a homomorphism Fy — Fs modulo \"T!, but not
modulo \" 2.

Proof. — 1t follows from Corollary 4.8 that ordy(Lie(3)) = 1. Hence we can apply
Proposition 5.2, which proves the corollary. O
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9. CANONICAL AND QUASI-CANONICAL LIFTINGS IN
THE SPLIT CASE
by

Volker Meusers

Abstract. — Following Gross we sketch a theory of quasi-canonical liftings when the
formal O -module of height two and dimension one is replaced by a divisible Og-
module of height one and dimension one in the sense of Drinfel’d.

Résumé (Reléevements canoniques et quasi-canoniques dans le cas déployé). — Suivant
Gross, on donne une théorie de relevements quasi-canoniques dans le cas ou le Og-
module de hauteur deux et de dimension un est remplacé par un O g-module divisible
de hauteur un et de dimension un au sens de Drinfel’d.

In this paper, we follow up on a remark by Gross [G] and discuss a theory of
quasi-canonical liftings when the formal O g-module of height two and dimension one
considered in [Ww1] is replaced by a divisible O g-module of height one and dimension
one in the sense of Drinfel’d [D]. In this situation the statements analogous to those
in [G], [Ww1] are easy consequences of Lubin-Tate theory and of a slight modification
of the Serre-Tate theorem for ordinary elliptic curves, as discussed in the appendix
to [Mes].

1. Formal moduli of divisible Og-modules

Let K be a field complete with respect to some discrete valuation. Let Ok be its
ring of integers, p = () its maximal ideal. We assume the residue field Ok /p to be
finite and let ¢ denote the number of its elements. For any non-zero ideal a C Ok we
set N(a) := |Ok/a|, i.e., N(p®) = ¢°. Let k be an algebraic closure of Ok /p. Let M
be the completion of the maximal unramified extension of K in some fixed separable
closure K®P. Denote the completion of K by C. Let Op; and O¢ be the rings of
integers in M and C respectively.

Following [D, §4] a formal group is a group object in the category of formal schemes.
For example any group scheme or any discrete group is a formal group in this sense.

2000 Mathematics Subject Classification. — 11G15, 14K07, 14K22, 14L05.
Key words and phrases. — Quasi-canonical liftings, complex multiplication, Lubin-Tate formal groups,
Serre-Tate theorem.
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For a formal group F' let us denote by F° its connected component. Let C be the
category of complete local noetherian Oy;-algebras with residue field k.

Definition 1.1. — Let R € C. A divisible O-module over R is a pair F', where F' is
a formal group over R and vr: O — Endgr(F) is a homomorphism such that F*° is
a formal Og-module of height h < oo in the sense of [VZ], and such that

F/F° =~ (K/OK)épf(R)

for some j < oco. The pair (h,j) will be called type of F.

To ease the notation, we will suppress the structure map g of an Og-module F
and simply write F'.

Drinfel’d shows that a divisible Ox-module over k is up to isomorphism given by
its type (h,j) (see [D, §4]).

Example 1.2. — For K = Q,, Ok = 7Z, the product group G = @,,,,, r X (Qp/Zy)rR is
an example of a divisible module of type (h.j) = (1,1) over R.

If R € C is artinian then the category of fppf-abelian sheaves on R with Og-
structure is an abelian category, the category of Ox-modules over R. It is useful
to view the category of divisible Ox-modules over R as a full sub-category of this
category.

Definition 1.3. Fix a divisible Og-module G over k. A deformation of G to R €
C is a pair (F,1) consisting of a divisible Ox-module F' over R together with an

isomorphism ¢: F ®pr k =G of Og-modules.

The deformations of G to R € C form a category in a natural way. One checks
that it is a groupoid and moreover that no object of this groupoid has non-trivial
automorphisms. The last point is due to the fact that for a deformation F the
isomorphism 1) is part of the data. Nevertheless we often omit ¢ from the notation.

Definition 1.4. For any R € C let us denote by D (R) the set of isomorphism
classes of the groupoid of deformations of G to R. Then D¢ becomes a set-valued
functor on C.

Fix a formal Og-module Hy of height h = 1 over k. It has a trivial deformation
space, i.e., Dy, (R) = {point} for any R € C. More precisely Dy, is representable
by Opr. This follows easily from the uniqueness of Lubin-Tate modules (see [Mel];
see also Remark 1.11(ii) for a far more general result of Drinfel’d). Let us denote by
H the unique lift of Hy to Op;. We assume, as we may, that H is given as the base
change

H = H_/ RO O,
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where Hy is the Lubin-Tate module over Ok corresponding to some fixed prime
element 7 € Ok and some fixed Lubin-Tate series f € F,. Recall from [Mel,
Lemma 1.7] that the isomorphism class of H does not depend on these choices.
Recall further that for any R € C we have H(R) = mp as a set. The Og-module
structure is given as follows: For q,¢' € H(R) and z € Ok we have ¢+ ¢ = H(q,q')
and z -g ¢ = [2](q). We often omit the subscript H from the notation.

Now fix some divisible Ox-module G over k of height h = 1 such that there is an
isomorphism G/G° = (K/Ok ). Fix an isomorphism of divisible O-modules
r: G i HO X (K/OK)k

where H is the unique lift of G° to Oy as above. Two such isomorphisms differ by an
element of the automorphism group of the right hand side. This group is described
by the following easy but important lemma.

Lemma 1.5
(1) We have

Homo, x((K/Ok )k, Ho) = {0} = Homo, x(Ho, (K/Ok)x)

and
EIld(f)K’k(Ho) = OK = EIIdOK’k((K/OK)k).

(2) In particular there is a canonical isomorphism
Ok x Ox — Endo, x(Ho x (K/Ok)k)-
It induces an isomorphism
Ok x O — Auto, x(Ho x (K/Ok)k).
Proof. — 1t clearly suffices to prove the first point. We have
Homo, x((K/Ok )k, Ho) = Homo, (K/Ok, Ho(k)) = {0}
by adjunction and because Hy(k) = {0}. We have
Homoe, .k (Ho, (K/Ok)i) = Homo 1 (Ho, (K/Ok)i) = {0}
because Hy is connected and (K/Ok)° = {0} . We have
Endo, x(Ho) = Ok

because by Lubin-Tate theory every endomorphism of Hy is uniquely given by its
differential at zero. We have

Endo, x((K/Ok)r) = Endo, (K/Ok)
by adjunction. Since the natural map
Ok — Endo, (K/Ok)
is well known to be an isomorphism we are done. O

We want to sketch a proof of the following theorem (compare the analogous state-
ment in [VZ, Theorem 3.8]):
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Theorem 1.6 (Universal deformation). — For any R € C and fized isomorphism r
there is a natural isomorphism

nr: Da(R) — H(R).

In particular D¢ can be given the structure of an Og-module (depending on r of
course). Since we assume H = Hf ®p,. On, the Og-module structure is given by
Lubin-Tate theory as recalled above.

The proof will take up the rest of this section. One proceeds as in [Mes, appendix]:
In the course of the proof we will identify both, D (R) and H(R) for R € C artinian,
with a certain Ext-group. So let us briefly recall the definition and some basic
properties of these groups. A careful discussion can be found in [Mt, chapter VII].

For objects M" and M’ of an abelian category A let
Ext (M, M)
denote the groupoid of extensions (M, p,7): M’ < M 5 M”. 1t is well known that
the map
Hom(M", M")  —  Autegy v,y (M, p, 1))
p +— idy+iopop

is an isomorphism of groups. In particular the automorphism group of (M, p, i) is
trivial if and only if Hom 4(M", M') is. Let

Ext 4 (M", M)

be the class of isomorphism classes of Ext 4(M", M'). Assume it to be a set. Some-
times we will not distinguish an extension from its isomorphism class. Using Baer-
addition Ext4(M"”, M') becomes an abelian group in the usual way. For N’ € A
let

(1.1) (5(M,p,i)‘N/: HomA(M',N’) — EXtA(MH,N/).

be the boundary homomorphism.

Apply this in the case that A is the category of Ok-modules on some fixed artinian
R € C. In this case the Ext-groups are in fact Og-modules.

Definition 1.7. — Let R € C be artinian. For any two Ox-modules M’ and M" over
R let

EXtOK,R(MN’ Ml)

denote the Og-module of extension classes of M"' by M’ constructed above.

Recall that we view the category of divisible Ox-modules on artinian R as a full
sub-category of the category of all Og-modules.
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Lemma 1.8 (compare [Mes, 1.2.4.3]). — Let R € C be artinian. Given an extension
of the form
H}-‘c°1—>F‘L> (K/Ok)r

of O -modules over R, then F is a divisible O -module such that F° = Hpr and
F/F° = (K/Og)r. If one uses the isomorphism r: G — Hy x (K/Ok)y, then F
becomes a deformation of G to R. This association yields a functor between the
groupoid of extensions of (K/Ok)r by Hr and the groupoid of deformations of G to
R.

Proof. Since (K/Ok )R is totally disconnected and Hp, is connected it follows that
i: Hp = F°. The snake lemma implies that p induces an isomorphism p’: F/F° =
(K/Ok)gr. It follows that F is divisible. Since Hgr(k) = {0} the extension Hr —
F — (K/Og)g yields an injective map F(k) — (K/Ogk)r(k) = K/Ogk. Since k
is algebraically closed it is an isomorphism. This isomorphism gives us a canonical
splitting map (K/Og)r — F ® k. Thus the extension is canonically split over k.
Together with the identification r: G — Hy x (K/Ok)r we get an isomorphism
v F®k = G such that the pair (F,v) is a deformation of G. One checks that
it is functorial. O

Proposition 1.9 (compare [Mes, appendix Prop.2.1]). Assume R € C to be ar-
tinian. Then the functor of the preceding lemma is an equivalence of groupoids and
there is a natural isomorphism

€ER: Dg(R) i EXtoKJq((K/OK)R,HR).

Proof. — fully faithful: It is enough to see that every object in either groupoid has a
trivial automorphism group. For deformations, this was noted above. For extensions,
recall that the automorphism group is isomorphic to Homo,. . r((K/Ok)r, Hr) = {0}.

essentially surjective: Let F be a deformation of G to R. We need to define
homomorphisms i: Hgr — F and p: F — (K/Ok)gr such that poi = 0. For this we
let p on R-valued points be defined as follows :

F(R) — F(k) = F @ (k) — Ho(k) < (K/Ok)(k) —» K/Ox = (K/O)r(R).

Since K /O is discrete the kernel of p equals F°. Because R is artinian local it follows
that F°®@ k = (F ® k)° =2 G° = Hy. Since Hp, is the unique lift of Hy to R it follows
that F° is isomorphic to Hg and we get the map i: Hp = F° — F. This proves the
first assertion. The second follows by passage to isomorphism classes. O

To calculate the Ext-group, we use

Proposition 1.10. For any artinian R € C the connecting homomorphism associated
to the sequence Ox — K —» K/Ok is an isomorphism

OR: H(R) = HOHIOK’R(OK,HR) =, EXtOK,R((K/OK)R7HR)-
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Proof. — Assume m’f;‘l = 0 for some n >> 0. Then H is killed by p” (compare [K,

Lemma 1.1.2]). Associated to the short exact sequence

i p
(Ok)r = Kr — (K/Ok)r
and Hp we have the boundary map (1.1)

6(KR7p>i)7HR : HOIIIOK)R((OK)R, HR) — EXtOK,R((K/OK)R, HR).

If we identify H(R) with Homo, r((Ok)r, Hr) this gives us the desired map dg.
Because the prime element m € Ok acts invertibly on K and nilpotently on H one
sees easily that

Homo, r(K, H) = {0} = Exto, r(K, H).

By the exactness of the long Ext-sequence, it follows that d is an isomorphism. O

Proof of Theorem 1.6. Combining Proposition 1.9 and Proposition 1.10 we get the
desired isomorphism for artinian R € C as

Nr = 5%1 O €R.

For general R we can pass to the limit over its artinian quotients. O

Remark 1.11

(i) How does one calculate the inverse of dg? For R = k both sides are trivial and
80 is dx. In the general case 61}1 can be computed by an approximation process with
respect to the "p-adic topology” on both Exto,. r(Ok, Hr) and H(R). For details we
refer to [K, page 151f], [Mes, appendix].

(ii) In particular it follows from this theorem that the formal moduli space of the
divisible module G = Hy x (K/QOk)y is representable by a formal power series ring in
one variable over Op;. More generally, Drinfel’d shows that the formal moduli space
of a divisible module of type (h,j) over k is representable by a power series ring in
h + j — 1 variables (compare [D, Prop.4.5]).

Definition 1.12. — For R € C and fixed r, let F' be a lift of G to R. Let us set
q(F,r) = ng( isom. class of ') € H(R).
We simply write ¢(F) if vp and r are understood. As in [Ww1], Definition 4.1 we
refer to the element ¢(F) € H(R) = mp as the formal modulus or coordinate of the
lift F.
Example 1.13. — It K =Q,, Og = Zp, and H = @m we are in the situation of [Mes],
Appendix. If we let grate(F') € 1+ G,,,(R) denote the coordinate introduced in [Mes],
then the relations are simply
grate(F) =1+ q(F) € 1 + Gm(R).
and
qate(F)* = (1 +q(F))* =1+=2 Cm q(F).
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2. Lifting endomorphisms

Let F and F' be deformations of G to R with coordinates ¢ = ¢(F),q = q(F"') €
H(R). We want to describe in terms of our chosen coordinates which endomorphisms
po € Endo,. r(G) lift to homomorphisms p: F' — F'.

Proposition 2.1 (compare [Mes, Appendix Prop.3.3]). — Let po: Fo — F| be given by
multiplication by z1 on (K/Ok)r and by multiplication by zo on H(R). Then po lifts
to a (necessarily unique) homomorphism p: F — F' if and only if we have the equality

21¢—20¢ =0€ H(R),
where the last expression is more precisely written as [z1)u(q) —u [20]H(q’).

Sketch of proof. — This follows from rigidity (see [VZ, Lemma 2.6], for formal O-
modules), the description of lifts in terms of extensions and the following well known
and simple lemma applied to M’ = N’ = H, M" = N’ = K/Ok and ¢ = z;
and ¢ = zj. O

Lemma 2.2 (compare [CE, chap.XIV, exercise 18]). — Let

M/—— M ——» M"

T

NI% N _ﬁ N//
t p

be a commutative diagram in an arbitrary abelian category. Then it can be completed
by a homomorphism p: M — N if and only if the extension obtained by pushing out
the upper sequence along ¢ is isomorphic to the extension obtained by pulling back the
lower sequence along 1.

Example 2.3. — For reasons explained above (see [Mel, Example 1.3]), the analogous
formula of [Mes|, Appendix reads:

(qrate)” (@Tate) = (1 + )" (1 +¢') ™ =1+ (219 "G 20q’) = 1.

Specialize to R = O¢. As a consequence of proposition (1.9) we can describe the
ring of endomorphisms of a lift F' of Fj to O¢.

Corollary 2.4. — Let F be a lift F' of G to O¢ with ¢ = q(F,r) € H(O¢). Then there
are two cases:

(i) If the annihilator of q in Ok is zero then the endomorphism ring of F equals
Ok.

(i) If the annihilator of q in Ok is p* for some 0 < s < oo then the endomorphism
ring of F', as a subring of the ring of endomorphisms of G, is strictly bigger then O
and is isomorphic to

EndoK’oC(F) = {(20,21) € Ok X OK|Z0 — 21 € pg} C Ok x Ok.
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Proof. — This follows directly from the proposition with ¢ = ¢’. Note that in this
case

(zi°mq)—m(20°mq) =(z21—2) rqg=0€ HR). O

3. Quasi-canonical lifts in the split case

We now show that the results on canonical and quasi-canonical liftings in [Ww1]
and [G] have analogues in the present case. To bring out this analogy we introduce
the following definitions:

Definition 3.1

(i) Set L = K x K and Of, = Ok x Okg. Embed K resp. Ok diagonally into L
resp. Op.

(ii) From Lemma 1.5 we get an Ok-linear isomorphism

ki Op — Endo, x(G).

(iii) The "completion of the maximal unramified extension” of L is given by My, =
M x M whose "separable closure” is M} = M>P x M>P.
(iv) Set

Iy = Gal(M;™|M) = Gal(M*P|M) x Gal(M*P|M).
By Lubin-Tate theory we have a reciprocity isomorphism
pil s Gal(M*P|M)™ = OF.
It induces a reciprocity isomorphism
P = (PR, p): TP — OF.
(v) For any integer s > 0 let
Os = Ok +p°0p, = {(20,21) € Or|z0 — 21 € p°}

be the ”order” containing Ok of conductor p* or level s in Oy,.

(vi) For s > 1 let M4|M be the fixed field in M*P of the inverse image under
the reciprocity isomorphism p32 of (1 + p*) C OF in Gal(M™P|M)), i.e., such that
reciprocity gives an isomorphism

Pl s Gal(M|M) — O /(1 +p%).

Remark 3.2. — One easily sees that the map O — Oj given by sending (z,y) € O]
to the quotient zy~' € O induces an isomorphism

OF |0 = 0% /(1 +7p°).
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If we let I's C I's® be the inverse image of O in I'a® under p3°, then we have the
following commutative diagram

ab
PrL

b X
- -
F% o OL

| |

ry> /T, ———— 05 /0%

(0,7’)'—%77'1\[’l gJ((:v,y)b—»rx;yl

Gal(M,|M) —— O} /(1 +p*)

where 722" denotes isomorphisms. In this sense we may consider M;|M to be the "ring
class field” of the "order” O, C Oy,.

Definition 3.3. — A quasi-canonical lift of G of level s > 0 ( with respect to &) is a lift
F of G to O¢ already defined over the ring of integers of some finite extension of M,
together with an Og-algebra isomorphism Og = Endoy 0. (F'). A quasi-canonical
lift of level s = 0 is also called canonical.

Proposition 3.4 (compare [Ww1, §1.3]). Let F be a lift of G. Then the following
statements are equivalent:

(1) The lift F is canonical, i.e., defined over some finite extension of M and such
that Endo,\,7oc(F) = EndoKyk(G) ~ O x Ok.

(2) The lift F is isomorphic to Ho,, X (K/Ok)o,, -

In particular there exists a canonical lift and it is unique up to unique isomorphism.
The formal modulus of a canonical lift Feoon s ¢(Fean) = 0 and thus independent of
the chosen isomorphism r.

Proof. — Clearly, the lift F = Hp,, x (K/Ok)o,, is canonical. To show that any
canonical lift is isomorphic to the product, note that the endomorphism ring of a
canonical lift contains the images ejnr and et of (1,0) € O and (0,1) € Or. They
satisfy eZ; = €2, = 1 and einr + €t = 1 and hence define a splitting

F = Im(einr) X Im(eet)

as claimed. Given two canonical lifts, the element (1,1) € Op induces a canonical
isomorphism. For the last claim simply observe that the split extension is the image
of 0 € H(O¢) under 6o, by construction. ]

Proposition 3.5 (compare [Wwl, §3] and |G, Prop.5.3])

(1) Quasi-canonical liftings Fs exist for all levels s > 0.

(2) Liftings of level s are rational over the ring of integers Oy, of Ms. Their
isomorphism classes are permuted simply transitively under the action of the Galois
group

Gal(M,|M) = OF /O = (0L /p°0L)* /(Ok /p*)*
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which has order

s=0
In particular M is the smallest extension of M over which a quasi-canonical lift can
be defined.
(3) The formal modulus q(Fs) € H(Ou,) = H(O¢) of a quasi-canonical lift of
level s is a uniformizing element of Opr,. In particular, for s > 1 the O -modules Fs
and Fiqn are not isomorphic over Oy, / m‘fm.

s _ 1 .
|Gal(Ms|M)|:{ o (1-4) ¢ sz
1 .

Proof. — For the first point recall that it follows from Lubin-Tate theory that
H(O¢ )sorsion = K/Ok as Og-modules. Thus there are elements g; € H(O¢) with
annihilator p® for any given s > 0. This implies the existence of a lift F,/O¢ with
formal modulus ¢,. By Corollary 2.4 the endomorphism ring of Fy is isomorphic to
O;. If s =0 then Fi,, = H x K/Ok is a canonical lift and it is clearly defined over
M. If s > 1 then the stabilizer of the formal modulus ¢s, i.e., 1 + Ann(gs), equals
1 +p® C Of. Thus again by Lubin-Tate theory its isomorphism class is stable under
the Galois group Gal(M®°P|My) since the identification of D, (O¢) with H(O¢) is
compatible with the action of Gal(M*°P|M). Since deformations have no non-trivial
automorphisms, this induces a Galois action on the chosen lift F,/O¢ itself. It
follows that Fy descends to a formal Og-module over Oy, = Oc N M.

For the second point note that the first isomorphism follows from Remark 3.2. One
checks easily that the natural map

01 /0F — (OL/p*0L)* /(Ok [p*)*
is an isomorphism. For s > 1 it follows from Lubin-Tate theory that
O /1+p%| = N(p)* H(N(p) — 1) = | Gal(M,| M)
as claimed .
The last point also follows from Lubin-Tate theory (see [Mel]), for one knows that
Niram(—¢qs) = 7 and hence

1 1
UALU\/[(QS) = %IJI\I(NMAM(QS» ey
(M, : M] (M, : M]

as claimed. Therefore ¢, € mpz, \m3, for s > 1. But the canonical lift has formal

modulus geqn, =0 € m%,,ﬁ. It follows that ¢s Z geqn mod mfws, O

Remark 3.6
(i) The degree formula in the proposition can be written in a uniform way as

| Gal(M,|M)| = N(p*) ] | <1 - <£[> N%l))

[[ps

where one formally sets
<—> =+1,-1,0

according as [ = p is split (our case), inert or ramified (the cases treated in [Wwl])
in the extension L|K.
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(ii) Let Eo be an ordinary elliptic curve over F,. Then one knows that its endomor-
phism ring is isomorphic to some order O C L in some imaginary quadratic field L.
Let ¢g € Z be the conductor of O. It is known that p does not divide cg. Set ¢ = p°co
and Os; = Z + p*O. Let M|L be the ring class field of the order Q. For example
if cg =1 and s = 0 then My, = M is the Hilbert class field of L, i.e., the maximal
unramified abelian extension of L. In this situation one has Deuring’s lifting theorem
(compare [L, chap.13,§4,85]). It guarantees the existence of an elliptic curve E; over
M with complex multiplication by Os and such that the reduction of F; at some
prime of degree one over p is isomorphic to Ey (same notational conflict as in the local
case). The j-invariants of the different curves Fy are permuted simply transitively
by the Galois group Gal(M|M). By the well known formula for the class numbers
of orders in imaginary quadratic fields (see [S, exercise 4.12]) the Galois group has

e | Gal(M,| M)| = ’;L((%')) = :gi: 1l (1 - (9 %> ‘

C0 s
I

X
where the symbol (£) is defined as in (i). The extra factor l—QiX—I is due to the presence
7 0]

of nontrivial automorphisms in this situation. It is trivial for L # Q(i), Q(¢*5"). This
statement of a global nature is thus completely analogous to the local statement of
Proposition 3.5.
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10. LIFTING ENDOMORPHISMS OF FORMAL
Ox-MODULES

by

Eva Viehmann

Abstract. — We present Keating’s results on lifts of endomorphisms of formal Ok -
modules over a power series ring. Let k be a separably closed field of characteristic
p. Let K a complete discretely valued field of characteristic p with finite residue field
and Of its ring of integers. Let F' be a formal Og-module over k[[t]] with generic
fiber of height h — 1 and special fiber of height h. We compute the endomorphism
ring of the reduction of F to k[[t]]/(t"*1).

Résumé (Relevements des endomorphismes de O i -modules formels). — On présente les
résultats de Keating sur les relevements des endomorphismes de O g-modules formels
sur un anneau de séries formelles. Soit k un corps de charactéristique p séparablement
clos. Soit Ok un anneau de valuation discrete complete de charactéristique p a corps
résiduel fini et soit K son corps des fractions. Soit F' un O g-module formel sur k[[t]]
a fibre générique de hauteur h — 1 et fibre speciale de hauteur h. On calcule I’anneau
des endomorphismes de la réduction de F & k[[t]]/(t"*1).

The following is an exposition of results in [K2].

1. Results

Let K be a complete discretely valued field of arbitrary characteristic with finite
residue field F,, where ¢ = p/ for some prime p. Denote by Ok the ring of integers
in K and let 7 be a uniformizer.

Let 1 < h < oo and let (Fy,vo) be a formal Ox-module of height h over a field k of
characteristic p with Og-algebra structure ¢ : Ox — k. The discrete valuation ring
R = K[[t]] has a canonical Og-algebra structure given by O — k — k[[t]] = R. Let
(F,7v) be a deformation of Fy of height g = h — 1 over R, that is a formal Ox-module
F over R with F = Fy (mod (t)). For a € Ok let [a]r = v(a) € Endg(F). Let

2000 Mathematics Subject Classification. — 14105, 11G07, 11S31, 14KO07.
Key words and phrases. — Endomorphisms of formal O g-modules.
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100 E. VIEHMANN

R, = R/(t"""), M,, = (t"R,,), and F,, = F @ R,,. As F is an Og-module of height
g < h, Lemma 2.1 of [VZ] shows that

(1.1) [7]r(X) = agX? +--- € R[[X?]]

with ag € R\ {0} and vi(ag) > 1.
The aim is to compute the endomorphism ring

H, = Endg, (F,) = Endr(F,)

for every n. Lemma 2.6 of [VZ] implies that the reduction maps R, — R, _; induce
injections H,, — H,_;. By [Wwl, Theorem 1.1] we have Hy = Endy(Fy) = Op,
where Op is the maximal order in a division algebra D of degree h? and invariant %
over K. Hence the rings H,, can be identified with Og-subalgebras of Op. Obviously
Ok €N, Hn. Let mp be a uniformizer of Op.

For m > 0 we define
(¢" =g 1)
(¢ = 1)(¢—1)

Theorem 1.1. — Let Iy, F, and ag be as above, vi(ag) = 1, k separably closed, and
fo € (Ok +7H0p) \ (Ok + 751 0p) C Op

for some l > 0. Write | = hm + b with integers m,b and 0 < b < h. Then fy €
Hn—l \Hn fOT

algm) =

b
gm 4 — 1

1.
q—l+

n=a(gm)+q

Using this result, we can easily calculate H,,:
Theorem 1.2. — In the setting of Theorem 1.1 we have
H” = OK + Wj)(n)(g[)

with j(n) = hm + b, where m and b are the uniquely defined integers with 0 < b < h
and

algm)—q¢™ +1<n<algm)+1 if b=0
qb—l -1 qb -1 -
a(gm) + q”m—q—_T +1<n<a(gm)+ qg""q“—1 +1 if 0<b<h.
Keating ([K2, Thm. 3.4]) also calculates H, without making the assumptions
ve(ag) = 1 and k separably closed.
To prove Theorem 1.1 we need the following two propositions.

Proposition 1.3. Let fo be as in Theorem 1.1 with 0 <1 < h. Then fo € Hy_1\ H,

1
-1
where n = (ZITI + 1.

Proposition 1.4. — Let fy € Ox +mpOp and n > 1 such that fo € Hy—1 \ H,. Then

()5 © fo € Hy—1 \ Hu wheren’ = qfn + €L 4 1.
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The first proposition says that the theorem holds for { < h. The second calculates
the maximal lifting of [w]p, o fo given the maximal lifting of fy. As the elements of
Ok lift to all levels, an inductive argument shows that the two propositions imply
Theorem 1.1.

2. Proof of the Lifting Theorem

We use the notation of the preceding section. Without further mention we assume
that the constant coefficients of all power series in this section are 0.

Let foy1 € Ryy1[[X]] be alift of f,, € H,,. We recall the definition of the associated
symmetric 2-cocycle with coefficients in (t"T1)k[[t]/(t"+?) from [VZ, Prop. 3.2J:

AX)Y) = fori(X+r0Y) —Fy Jor1(X) =5y o (Y)
6¢1(X) f’”+1 o [a’]Fn,JrL(X) T Fag [U’]Fn+1 o f71+1(X) (a’ € A)

The cocycle vanishes if and ounly if f,41 € Hyy1 = Endg,,, (F).

Corollary 2.1. — Let fo(X) € Ry[[X]] be a lift of fo(X) € Hy. Then f, € H, if and
only if fn commutes with [7]F, .

1

Proof. — This follows by induction on i € [0,n] from [VZ, Prop. 3.2, 2. and
Lemma 3.1]. O

Lemma2.2. — Let f, € H, with f,(X) € R,[[X]] of the form f,(X) = by X7 +---
for some r >0 and by € R, \ {0}.

1. There exists a lift f+1 € Hpq1 of fn.
2. If the degree of the leading term of 6. is greater than q" 9, the leading term of
fn+1 has degree q".
3. Otherwise the degree of the leading term of 6, is ¢"79 and the leading term of
frs1 has degree ¢" L.
Proof. Let f),, € Rn_;_l[[er]] be an arbitrary lift of f,, and let (A;{d.}) be the
corresponding cocycle. As [7], ., (X) € Ru1[[X?"]], the degree of the leading term
of &, is at least ¢"T9. The assumption 7 > 0 together with [VZ, Cor. 3.4 1.] implies
that 6,(X) € M, 1[[X?"]]. Hence by [VZ, Cor. 3.4, 2. and Prop. 3.2, 3. we get a
lift fri1 = fl11 —Fu., € If the degree of the leading term of dr is ¢" 19, the leading
term of ¢ = d o p~! has degree ¢"9~" = ¢"~1. Otherwise the leading term of ¢ has
degree greater than ¢"~'. Thus the degree of the leading term of f,, ;1 is greater than
q¢" ' As it is a lift of f,, its degree is at most ¢”". But the degree has to be a power
of ¢, as fni1 € Hpy1 = Endg, ., (Fq1) (compare [VZ, Lemma 2.1]). Hence it has to
be ¢q". O

Let F, Fy,aq as in Theorem 1.1. Let fo € Hy and let f,—1 € H,_1 be a lift,

i€, fn—1 = fo (mod (t)). We can write f,—1(X) = bo X9 + -+ for some r > 0 and
by € Rp—1\ {0}. Let m = v¢(bo). As by # 0 in Ry,_1, we have m < n.
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Lemma 2.3. — Suppose that in the above situation m + q" < ¢9m + 1. Then

1. m+4+4q" >n.

2. If m+q" >n, then f,_1 lifts to f, € H, of the form f)(X) = byX? 4 --- with
v (by) = m.

3. Ifm+q" =mnandr > 0, then f,—1 lifts to f, € H, of the form f/(X) =

WX e with v (b)) =n=m+q".

A lift of fn.—1 to H, again satisfies the assumption of the lemma.

Ifm+q" =n andr =0, then f,_1 does not lift to an element of H,.

Sfno1 lifts to Hy 1 withn’ = m + '17;_11_1 but not to H,.

e~

> ot

Proof. — We assumed v;(ag) = 1, where ag is as in (1.1). By the assumption of the
lemma the valuation of the leading coefficient of §, is

” 9 "
ve(boad —apbl ) =m+4q".

As fn—1 € H,_1, this coefficient is in (¢") and 1. follows. Since f,,—1 € H,_; has
leading term of degree ¢, it has to be a power series in X7 . Let f,, € R,[[X9]] be
a lifting with

FulX) = B X 4+

For the corresponding 2-cocycle we have
0-(X) = (I;Oagr - (Lol;gg)erH +oe

If m+q" > n, the first term vanishes modulo (" 1), so the degree of §, is greater than
q" 9. Besides, r has to be positive, thus 2. follows from Lemma 2.2, 2. If m +¢" = n,
the leading term of §, has degree ¢" ™9, hence 3. follows from Lemma 2.2, 3. The
values of m and r for a lift of f,_1 to H, are either the same as for f,,_; or they
change to n and r — 1. In both cases the assumption of the lemma is satisfied. This
shows 4. for the case r > 0. If r = 0, the statement is trivial. To show 5., we assume
that there exists a lift. By 4. it satisfies the assumption of the lemma with » = 0 and
m = n — 1. Thus 1. implies n — 1 + 1 > n + 1 which is a contradiction. The last
assertion follows by applying 2.-4. until the assumption of 5. holds. O

Proof of Proposition 1.4. We write fo = a + f§ with a € Ok and f§j € 7pOp.
Since Ok C H,, for every n, we may assume fy = f} € 1pOp. We assumed that fo
lifts to f,—1 € H,_1 with f,_1(X) = b X9 + --- for some by € R,,_1 \ {0} but not
to H,. Lemma 2.2 implies » = 0. We have f,_; = fo (mod (¢)) and fy € 7pOp.
Hence m = v4(bg) > 0 and the assumption of Lemma 2.3 is satisfied. As f,—1 does
not lift to H,,, the lemma shows that v¢(bo) =n — 1.

We lift f,,—1 arbitrarily to f(X) € R[[X]]. This lift is unique modulo ("), so
[7]F o f is unique modulo (t2""*1). Here we use that [1]p(X) = agX? + .-+ with
vi(ap) = 1. We next show that the reduction ¢gay, of [7]r o f modulo (t9'"*1) is in
Hyqp. By Lemma 2.1, 2. it suffices to verify that

[7)ro([wlpof) = ([xlpo f)olalr (mod (t4))
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which follows from [rr|p o f = f o [n]r (mod (t")). Now we determine the maximal
lifting of ¢qe,,. We have
Ggon = [7]ro f(X)
= apby X7 4+ ... (mod (t7°"F1))
and vy (a,obgg) =14 ¢9(n — 1). The assumption of Lemma 2.3 applied to ¢qq, reads
1+¢n—-1))+¢ <¢?1+¢(n—-1))+ 1.

Tt is satisfied because n > 1 and g > 1. We get that ¢q¢, lifts to H,/_1 but not to
H,, where n’ = ¢9n + ‘1;%11 + 1. O

For the proof of Proposition 1.3 we need the following lemma.

Lemma2.4. — Let fo_1 € Hy 1 with fr_1(X) = boX9 4 --- and m = v;(by) as
before. Assume m + q" > ¢m + 1 = n. Then f,_1 lifts to fl, € H, of the form
(X)) = bf)X‘IP1 + -+ with ve(by) = ¢9m + 1.

n

Proof. — We lift f,_; arbitrarily to f,(X) € Rn[[X‘IT]] with f,(X) = bo X1 + ...
As before let (A, {d,}) be the corresponding cocycle with coefficients in M,,. We have
6-(X) = foolmlr (X)—p, [7]r, o fa(X)

= (boal —aohd X"+
The assumptions imply vt(i)gagr — aOng) = ¢9m + 1 = n. Therefore the first nonva-
nishing term of §, has degree ¢"*9. As m < n, the assumption m + ¢" > n implies
r > 0, and by Lemma 2.2, 3., f,_1 lifts to f; € H, with leading term of degree
r—1
q - d

Proof of Proposition 1.3

Case 1: [ = 0. In this case fo € Op\(Ok+7pOp) has the form fo(X) = bg X+ --
with by € Fyn \ Fy. Let f1(X) € Ry[[X]] with fi(X) =0b0X +--- be an arbitrary lift
of fo. We have to show that fi ¢ H;. For the corresponding cocycle with coefficients
in M; we have 6,(X) = (boao — a,obgﬂ)qu + -+, Since by € Fyn \ Fy, we have
ve(bo — b;l,g) = 0. Thus bpag — a/obgg is nonzero in Ry and 6,(X) # 0, which shows
fi ¢ Hy.

Case 2: 0 <[ < h. Here

(Ok +71H0p)\ (O + 71 0p) C O + (74, 0p \ 71 Op).

As elements of O lift to all levels, it is enough to consider fy € b Op \ ngop.
Then fp is of the form fo(X) = bqul + -+ with by € k*. As m = 0, Lemma 2.4
shows that fy lifts to f] € H; of the form f{(X) = b{)X‘II_J + -+ with v, (bj) = 1. For
f1 the assumption of Lemma 2.3 is satisfied, so fy lifts to H,_; but not to H, with
_ g1
n = q_—l— =+ 1
Case 3: | = h. Here

(Ok +7H0p)\ (Ok + 7 Op) € Ok + 7h(Op \ (Ok +7p0Op)).
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Similarly to the second case it suffices to consider fo € 7(Op \ (O + 7pOp)),
that is fo = mgy for some gy € Op \ (Ox + 7pOp). Then go(X) = by X + --- with
by € Fyn \ Fy. Let g(X) € R[[X]] be an arbitrary lift of gg. From
[mlpog=gelnlr (mod (1))
we get
(7)o ([n]rog) = ([mlrog)olnlr (mod (t771)).
Lemma 2.1 shows that
foo(X) = Inlpog(X)
aph?’ X7 4.+ (mod (t7"*+1))
is in Hqg. Let fqg_;_l € ng+1HquH with fqy+1(X) = C()qu + - and co = a()bgg
(mod (t7°+1)) be a lift of f,. The corresponding cocycle satisfies

It

67"(X) = fq-"+] O[ﬂ]F¢,ﬂ+|(X) “Fuo41 [ﬂ-]Fq.flJrl qu”+l(X>
= (coaf —apcd )XT" 4.
= ang(bgg - bgzg)X"zq + -+ (mod (t7°2)).

g 2¢ g 9 2¢
Since by € Fyn \ Fy, we have bg} # bd " in IF,n. Hence ag’+1(bg] — bl ’) is nonzero in
Mo 41 and 9, has leading term of degree ¢*9 = ¢"*9. So Lemma 2.2, 3. shows that
fqo lifts to fr, 1 € Hyoy1 with leading term of degree ¢~ As J4a41 satisfies the

h
assumption of Lemma 2.3, it lifts to H,,_{ but not to H,, where n = qq:ll + 1. O
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11. ENDOMORPHISMS OF QUASI-CANONICAL LIFTS
by

Inken Vollaard

Abstract. — We present Keating’s result on the locus of deformation of an endomor-
phism of a quasi-canonical lifting. At the same time, this determines the endomor-
phism ring of the reduction of quasi-canonical liftings to Artin rings.

Résumé (Endomorphismes de relévements quasi-canoniques). — On donne le résultat
de Keating concernant le lieu de déformation d’un endomorphisme d’un reléevement
quasi-canonique. En méme temps, ceci détermine I’anneau des endomorphismes de la
réduction d’un relevement quasi-canonique a des anneaux artiniens.

In this paper we prove a lifting theorem for endomorphisms of a formal Og-module
to a quasi-canonical lift. For the canonical lift, a similar lifting theorem is proved
in [Ww1]. This work is due to K. Keating ([K1]).

I thank S. Wewers for helpful comments on this manuscript.

1. Notation

Let K be a complete discretely valued field, let Ok be its ring of integers and let
7 be a uniformizing element of Ox. We will assume that the residue field of O is
equal to the field IF, of characteristic p. Denote by k an algebraic closure of F,. Let
L be a quadratic extension of K and let A = @f be the completion of the maximal
unramified extension of Op. Denote by M the quotient field of A.

Let Fy be a formal Og-module of height 2 over k. By [Ww1] Theorem 1.1, the
ring of Og-linear endomorphisms Endy, Fj is isomorphic to the maximal order Op in
a division algebra D of dimension 4 over K and invariant 1/2. We identify Endy, Fy
with Op. Let F be the canonical lift of Fy over A with respect to an embedding

O[J — O[).

2000 Mathematics Subject Classification. — 141.05, 11G07, 11531, 14KO07.
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106 I. VOLLAARD

We consider a quasi-canonical lift F’ of Fy of level s ((Ww1, Def. 3.1]). By definition,
Endas F’ is an order Og := Ok + w°Op in Op. Note that a quasi-canonical lift of
level 0 is a canonical lift and therefore can be defined over A. A quasi-canonical lift
of level s > 1 can be defined over a totally ramified Galois extension M'/M of degree

¢ +¢* ! if L/K is unramified

[M': M] =
q° if L/K is ramified

((Ww1, Thm. 3.2]). Denote by A’ the ring of integers of M’ and denote by 7’
a uniformizing element of A’. If s is equal to 0, the ring A’ is equal to A. Let
es = e(A’/Ok) be the ramification index of A" over Ok, i.c.,

2q° if L/K is ramified.
es =4 q¢*+ ¢! if L/K is unramified and s # 0.
1 if L/K is unramified and s = 0.

By [Ww1, Proposition 4.4 and Proposition 4.6], the endomorphism [7]p is given by
a power series

(1.1) [7]pr = X 4 uXT4 - 0oXT o€ A'[[X]]

with vy (u) =1 and v (v) = 0.
Denote by A/, = A’/(x')"*! the reduction of A’ modulo (7/)"*! and by F! =
F' ®4r A}, the reduction of F’ to A],. We obtain

OS:EndA/F/C"'CEIldA/”FéC"'CEndkFo:OD

([VZ, Lem. 2.6]), hence we will consider Enda; F}, as a subring of Endy, Fy = Op.
We write End F), instead of Enda, F,.

For n < e the ring A’/(7')™ is of characteristic p and one can define the height of
the module F ([VZ, Def. 2.2]). By construction, F, is of height 1 if 0 < n < e, and

Fy is of height 2. Denote by a; the coefficients of [7]p/. Then vy (a;) > ey if ¢ 14, and
ver(ai) > es if ¢ |7 and g2 {i.

2. Results

The goal of this paper is to compute the endomorphism rings End F, as subrings
of Op. In the case of the canonical lift, these rings are calculated in [Ww1]. Denote
by a(k) the rational number

k
—-1)(g+1
oy~ @ =D+
q—1

for every integer k. We have a(0) = 0 and a(k) = (¢ + 1)(21:01 q') for k > 1.
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11. ENDOMORPHISMS OF QUASI-CANONICAL LIFTS 107

Theorem 2.1. —— Let F' be a quasi-canonical lift of Fy of level s. Let 1 > 0 be an
integer and let
Jo € (05 +7HO0p)\ (O + 75 Op).

Then fo lifts to End F), | and not to End I}, with

a(t)+1 if 1 <2s and | even.
mo=ni(s) =m(L/K,s) =S a(’5H) + ¢ +1 if 1 < 2s and | odd.

a(s = 1)+ ¢+ (Bt —s)es +1 ifl >2s— 1.
Remark 2.2. The rational number n; of the theorem is an integer. Indeed, if L/K
is ramified, the ramification index ey is even. If L/K is unramified and { > 2s is even,
then

O, +150p = 05 + 71 Op.

Theorem 2.3. — Consider the same situation as in Theorem 2.1. Then End F), =

Os + Wﬁ'”@p where

2k if n €lalk — 1) + ¢* 1 a(k)] for k < s.
i) = 2k +1 if n €la(k);a(k) + q*] for k < s.
= k ifn€la(s — 1)+ ¢+ (5 —s)essals — 1) + ¢~ + (B — s)e]

for k > 2s.

Note that the above intervals form a disjoint cover of the set of positive integers. The

integer j(n) is uniquely determined unless L/K is unramified and j(n) > 2s. In this

case we have O4 + ﬂj(n')(')p =0+ Fj(n)HOD or every even j(n).
D D Y

Proof. — This theorem follows from Theorem 2.1. O

Remark 2.4. — 1If I’ is the canonical lift of Iy, i.e., if s = 0, Theorem 2.1 and
Theorem 2.3 have already been proved in [Ww1l] Theorem 1.4. We obtain in this
case
End F,, = O, + WZOD

and

I+1 if L/K is ramified.

m(0) =<, . . »
= if L/K is unramified.

3. Proofs

We will assume in the following that s is greater or equal than 1. We will split
the proof of Theorem 2.1 into two propositions similar to the proof of Theorem 1.1
in [Vi].
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108 I. VOLLAARD

Proposition 3.1. — Let | <2s+1 and let s > 1. Let
fo € (Os + THOP)\ (O + 711 Op).
Then fo lifts to End F}, ; \ End F}, with

)+ 1 if 1 <2s andl even.
-1

n; = a(%l) +q¢gz +1 if 1 < 2s andl odd.
a(s —1)+¢ T +es+1 ifl=2s+1.

|~

af

Proposition 3.2. Let s > 1 and let fo € End F),_, \ End F, with n > ‘;;__11. Then
[t] o fo lifts to End F, | \ End F, with n' =n+ e,.

Proof of Theorem 2.1. — Theorem 2.1 follows by induction from Proposition 3.1 and
Proposition 3.2. Let | > 2s+ 1 and let fo € (Os + 7,0p) \ (O + 7TI’D+10D). Write
fo=c+[r]R, 0 go with ¢ € Oy and gy € WEQOD \ (05 + ngop). By induction gq
lifts to End £, \ End F}, _ with

ny—.2

. -1
m;g:a(s—1)+q‘*’1+(—2—-s)es+1
2¢° -2  1-1 s — 1
:—L—+(——4s)652€‘ .
q—1

q—1 2
By Proposition 3.2 the endomorphism [7] g, © go, hence fo, lifts to End F, _, \ End F,
with n' = nj_o +e5 = ny. O

Remark 3.3. — We now split the proof of Proposition 3.1 into two cases. As we will
see below, we can use the results of [Vi] in the case n; + 1 < e,. Note that n; is a
strictly increasing sequence.
An easy computation shows that there exists an integer [y such that n;, +1 < eg <
ni,+1. We obtain
— lp = 2s if L/K is ramified and ¢ > 3.
L/K is unramified and ¢ > 3.
—lo=2s—1if { L/K is unramified, ¢ = 2 and s = 1.
L/K is ramified and ¢ = 2.
— lp =2s—2if L/K is unramified, ¢ = 2 and s # 1.

Proof of Proposition 3.1 in the case of nj +1 < e,. Since A’/ @K is a totally ram-
ified extension of ramification index ey, we obtain for n < e, an isomorphism of
O-algebras

A /(') = (Ok /() [7']/ (7")"
K/ (1)

1%
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11. ENDOMORPHISMS OF QUASI-CANONICAL LIFTS 109

Let fo € (O +7TZDOD) \ (Os +7r151(9p) with n; +1 < ey, i.e., with [ <lp (Rem. 3.3).
Then F), is a lift of Fy of height 1 over k[t]/(¢)™ " and we will prove the proposition
by using the results of [Vi].

We have Oy + 7,0p = Ok + 7,Op for | < 2s and by an easy computation
O, + 7T2DS+1(’)D =0k + ﬂ%g+1013 if /K is ramified. Hence [Vi] Theorem 1.1, shows
that fy lifts to End F/, _, \ End

,,- This proves the proposition in this case. O

3.1. Let fo be an element of End ;. By f,—1 € A!,_[[X]] we always denote the
unique lift of fy as an endomorphism of F! _,. Let f € A’[[X]] be a lift of f,_, as a
power series without constant coefficient. As we are interested in endomorphisms of
formal groups, we make the general assumption that all power series in this article
have no constant coefficient. We write fi for the residue class of the power series f

in A} [[X]]. Denote by € the commutator
e=folrlp —p [l o f e A[X]]

using the additive operation on A’[[X]] induced by F’. Then € has coefficients in (7/)"

because f,_1 is an endomorphism of F_;.

The main technique to prove the lifting theorem is the cohomology theory as
in [VZ]. Denote by I, the l-dimensional k-vector space (7/)"/(7’)"T!. Consider
the cohomology group H?(Fy, I,,) as in [VZ] Chapter 3. For f,_; € End F/_, one
can define a cocycle (A, {d,}) € H?(Fy, I,). Then f,_; lifts to End F), if and only if
(A, {04}) =0, i.e., if and only if 0 is a power series in X ([VZ] Prop. 3.2, Cor. 3.4).
We have

§» = emod (7"t

Lemma 3.4. — The cohomology group H?(Fy, L) is a k-vector space of dimension 1.
For a cocycle (A, {6.}) € H?(Fy, I,,), the element 6, = 3(X9) is a power series in
X9 and (A, {0.}) Z 0 if and only if 3'(0) # 0.

Proof. By [VZ, Lemma 2.5], every formal module over & is isomorphic to a normal
module. Then [VZ, Proposition 3.6], shows that H?(Fy, k) is a k-vector space of
dimension 1. A basis is given by a cocycle (A, {d,}) such that §, = B(X9) is a power
series in X9 with 3'(0) # 0. This proves the lemma. O

Remark 3.5. — Let fo € End F),_,. By Lemma 3.4 the power series € is a power series

in X9 modulo (7/)"*1,

(3.1) e=aX?%4 ... mod (z/)"*1

Furthermore, v, (a) > n and vy (a) = n if and only if fo & End F!.

Lemma 3.6. — Let fy € End F),_, and let k = min{n + e5,1 + qgn}. Then [r|g, o fo
lifts to End F}_,.
(i) If 14 gqn < n + ey, the endomorphism [r]p, o fo lifts to End FJ.
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(i) If k = n+es and fo ¢ End F), the endomorphism [r]g, o fo does not lift
to End Fy,.

Proof. — We use the notations of 3.1. By equation (1.1) we obtain
(7l o folmlp —p [7]f o f = [m]p o€
(3.2) — et tuel 4 +vel 4.
Since ¢ has coeflicients in (7/)", we have
[7]F 0 € = 0 mod (')~

Thus [r] F;_, © fr—1 commutes with [7] #;_,» hence it is an element of End I}, ([VZ,
Cor. 3.1]). We obtain by (3.2)

(33) 5#([7T]F’

2 N
v o fr—1) =met o tue + -+ ve” + ... mod Cokans
. . o . . . . 2 .
If 1 +gn < n+ ey, the power series (3.3) is a power series in X9 as ¢ is a power
series in X7 modulo (7/)"*!. Hence ||, o fo lifts to End F}.

If £k = n + ey, we obtain

Sx([m]p; 0 fr1) =maX4 ... mod Uk

with vy (ma) = n + es. Hence [ﬂ]p/_l o fnr—1 does not lift to End F. O
Proof of Proposition 3.2. — Since n > %7 we obtain min{n+ey, 1+qn} =n+e, =
n/. The proposition follows from Lemma 3.6. O
Proof of Proposition 3.1 in the case of n > es. By Remark 3.3 we have to prove

the following cases.

1. L/K unramified and [ = 2s + 1.

2. L/K ramified and | = 25 + 1.

3. L/K ramified, ¢ = 2 and [ = 2s.

4. L/K unramified, ¢ = 2,1 =2s— 1 and s # 1.
Note that I > 2. Let fy be an element of (O4 + 77",)(’)1)) \ (Os + WIZ;FIOD). Write
fo=c+[n]E, ogo with ¢ € O, and go € 7T[D_2OD \ (Os + Wl[)_l(’)l)). Since elements of
Os lift to End F', it is enough to show that [7]p, o go satisfies the claim. As go is an
element of 72 'Op \ (Os + 7% Op), it lifts to End F,_, \ End F!, with n = n;_s. We

have

X 2q° — 2
(3.4) n=a(s—1)+¢ 1 +1= a .
q—1
In the first case, we obtain n;_o > e;:ll and the claim follows from the case l = 2s—1

from Proposition 3.2.

Now consider the other cases. Note that in these cases n + 1 < ey (Rem. 3.3).

Let n’ = n;. We have to show that [7], o go lifts to End F/, _; \ End F,. An easy

n’—
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calculation shows that in each case n’ = gn + 2. By equation (3.4) we see that
es +n = gn in the second case, and es +n > qn + 2 in the other cases. Now we
can use Lemma 3.6 (ii) to see that 7 o gg lifts to End F, ;. Let h, _; € End F),
be a lift of [7T]F6 © go. It remains to show that h, _; does not lift to End F},, i.e.,

Sp(hn—1) € AL [[X]] is not equal to zero modulo (X)7’.

Let hy,, € A}, [[X]] be alift of h,,,_1 as a power series. Then h,, = [7]p/ 0gn +ps 1
with a power series ¢ = bX +--- € (x/)" ~}[[X]]. Using the notation of 3.1, we obtain

O (hnr—1) = Ox(Tpr, 0 gn—1) +pr, o [mpr, =g, [m]pr, 0
(3.5) = [nlpr, o€ +pr, Yo [n]pr, mod (n)+
By (3.1) we obtain from equation (3.5)
On(hp—1) = (ma+bu) X7+ ... mod (7T')"/+1.

It is sufficient to prove the following claim.
Claim. We have

7a+ bu # 0 mod (7).

Indeed, we have 0 (h,—1) = 0 mod (7r’)"l since h,/_1 is an endomorphism.

obtain from equation (3.5) that
Or(hnr 1) = (ue” 4+ ve? +.) +pr (X7 +..) mod ()"
= (ua’ + bv) X% + ... mod (7')"
hence we have
(3.6) ua? + bv = 0 mod (7).
Since vy (a) = n (Rem. 3.5) and n’ = gn + 2, we obtain that vy (b) =n’ — 1.

We

We first consider the last two cases. In these cases, we have es +n > n’. Therefore,
’ . . . .. . .
ma = 0mod (7')" *! and the claim is satisfied. Thus the proposition is proved in

these cases.

Now consider the second case. Let
g=aX+ - € A[[X]].
Since n + 1 < eg, we obtain from the definition of e
e=ula—a)X%4 ... mod (7')"*!,
hence
a =ula—a).

As v/ (a) = n, we have v (o) =n — 1.
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Using equation (3.6), we obtain

’
wa + bu = 1a — v 'ula = Tua — v w20 mod (7)™ L.

The idea is to analyze the solutions of the equation
(3.7) ro— v 0 = 0 mod (7).

There are ¢ different solutions of this equation for o € (7/)"~1/(7/)". We will identify
these solutions as first coefficients of endomorphisms corresponding to elements of Os.

Consider the following general situation. Let fo and f§ be two elements of W%SH(D D
which are not equivalent modulo 7r21)3+2(’)p. As before, we write fo = [] Fy © go and

fo = [mlry o g5 We obtain
90— 90 €5 'Op \750p =757 0p \ (Os + 75 0p).

Hence the endomorphism gg — g}, lifts to End F,_; \ End F,. Write g = aX +... and
g = a'X + ... as before. We obtain vy (o — ') = n — 1, hence o and &’ are not
equivalent modulo (7/)™. Thus different equivalence classes of endomorphisms belong
to different equivalence classes of coefficients. As L/K is a ramified extension in the
division algebra D, we have
(O N7H 1 0p) /752 0p = (O +7°OL) N7y M Op) /772 0p

= 7TS+10L/(7T2DS+2OD N 7TS+1OL)

= OL/TI'LOL =T,
Thus the ¢ different solutions of (3.7) correspond to the equivalence classes of endo-
morphisms of O, in End F},,. By our assumption [7]r; 0 go & Os + 75 2Op, hence
equation (3.7) is not satisfied which proves the claim. O
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12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene 1. Bouw

Abstract. — This paper deals with Gross—Keating invariants of ternary quadratic
forms over Z,. The main technical difficulties arise in residue characteristic £ = 2. In
this case, we define the Gross—Keating invariants in terms of a normal form. We give
an alternative, less computational approach for anisotropic quadratic forms.

Résumé (Invariants de Gross—Keating pour les formes quadratiques ternaires)

Cet article concerne les invariants de Gross—Keating pour les formes quadratiques
ternaires sur Z,. Les difficultés principales n’apparaissent qu’en caractéristique rési-
duelle ¢ = 2. Dans ce cas, nous déterminons les invariants de Gross-Keating en termes
d’une forme normale. Pour les formes anisotropes nous donnons une approche plus
directe.

This note provides details on [GK, Section 4]. The main goal is to define and com-
pute the Gross-Keating invariants ai, ag, asz of ternary quadratic forms over Z, (Def-
inition 1.2). If a1 = a2 mod 2 and ag > az we define an additional invariant € € {41}
(Definition 2.7, Definition 4.8). If £ # 2 every quadratic form over Z; is diagonaliz-
able, and it is easy to determine these invariants from the diagonal form (Section 2).
If ¢ = 2 not every quadratic form is diagonalizable. Moreover, even for diagonal
quadratic forms it is not straightforward to determine the Gross—Keating invariants.
We determine a normal form in Section 3 and compute the invariants in terms of
this normal form (Section 4). In Section 5 we determine explicitly when a ternary
quadratic form is anisotropic. A complete table can be found in Proposition 5.2 (non
diagonalizable case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an
alternative definition of the Gross—Keating invariants for anisotropic quadratic forms.
The results of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4].

Our main reference on quadratic forms over Z; is [C, Chapter 8]. Most of the
results of this paper can also be found in the work of Yang, in a somewhat different
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form. The Gross—Keating invariants are computed in [Y1, Appendix B]. The question
whether a given form over Z; is isotropic or not (Section 5) is discussed in [Y2].
I would like to thank M. Rapoport for comments on an earlier version.

1. Definition of the invariants a;

In this section we give the general definition of the Gross—Keating invariants a; of
quadratic forms over Z, which are used in [GK].
Let L be a free Zy-module of rank n and choose a (for the moment) arbitrary basis
P = {¢1,92,...,¢¥,}. For the application to [GK] we are only interested in the case
n = 3 of ternary quadratic forms. Let (L, Q) be an integral quadratic form over Zg,
that is,
Q(’l) = Q(Z J,’,(/h) = Zb7]£7%7, with bij € Zy.
i<y
Put bj; = b;; for j > 1. If we want to stress the dependence of the b;; on the basis, we
write b;; () for b;;. We write (z,y) = Q(x +y) — Q(z) — Q(y) for the corresponding
symmetric bilinear form and B = ((¢;,;)) for the corresponding matrix. Note that
B = (Bij), where Bij = { 327;7 lfi; Z<:J,j
In the rest of the paper we only use the b;; and not the B;;, for simplicity. We denote
by ord the f-adic valuation on Z,. We always suppose that @ is regular, that is,
det(B) # 0.
Changing the basis multiplies the determinant of B by an element of (Z)?. There-
fore the determinant is a well defined element of Z,/(Z; ).

Lemma 1.1. — Suppose that either £ # 2 or n is odd. Define
1
A=AQ) = 3 det(B).
Then A € Zy.

Proof. — The lemma is obvious if ¢ # 2. Suppose that / = 2 and n odd. Write
A=) es. 2°@)d(c), where d(c) = (—=1)*8") ™| b,y and 6(c) + 1 is the number
of i € {1,2,...,n} which are fixed by o. The only problematic terms are those with
§(o) = —1. Suppose that o acts without fixed points on {1,2,...,n}. Then o~ # o,
since n is odd. The matrix ((¢;,1;)) is symmetric. It follows that d(o) = d(o '),
hence 25 d(a) 4 25 Dd(o~1) € Z,. O

We now come to the definition of the Gross-Keating invariants of a quadratic
form. Let ¥ = (11,%2,...,1%y) be a basis of L. We write S(1) for the set of tuples
v = (y1,Y2,---,Yn) € Z" such that

(1.1) yi <y <<y, LY ;r Y < ord(bij(p)) for1<i<j<n.
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Let S = US(v). We order tuples (y1,...,yn) € S lexicographically, as follows. For
given (Y1,...,Yn); (21,...,2,) € S, let j be the largest integer such that y; = z; for
all i < j. Then (y1,...,yn) > (z1,...,2n) if y; > 2;.

Definition 1.2. — The Gross—Keating invariants ai,...,a, are the maximum of
(y1,---,Yn) € S. A basis 1 is called optimal if (aq,...,a,) € S(¢).

If ¢ is optimal, then
(1.2) a;+aj <2o0rd(bi;(¢p)) for 1<i<j<n, and a3 <ax<---<ap.

Since A is well defined up to (Z, )?, the integer ord(A) is well defined. The following
lemma will be useful in computing the Gross—Keating invariants.
Lemma 1.3

(a) Suppose that n is odd, then
ord(A) > ay +az + -+ + an.

(b) We have
= mi d(z,y).
ai = min or (z,y)
(¢) Define p := min4 ord(det(A)), where A runs through the 2 by 2 minors of B.
Then
a1 +ag < p.

Proof. — This lemma is proved in [Y1, Lemma B.1, Lemma B.2]. Note that the
matrix T in [Y1] differs by a factor 2 from our matrix B. Let ¢ be an optimal basis.
We use the notation of the proof of Lemma 1.1.

First suppose that ¢ = 2. Write S for the set of equivalence classes in S, un-

der the equivalence relation o ~ o~!. The proof of Lemma 1.1 shows that A =
ZU€S(~l)sg“(”)Q(g/(")d(a), where §’(g) > 0. The choice of ¢ implies that

0rd(2‘5/(‘7)d(0)) =¢'(0) + 0rd<H bw(,;)) > Z i ag(1 Za,
i i=1

This proves (a) in this case.

If ¢ # 2, define ¢’(0) = 0 for all o € S,,. Then the proof works also in this case.

Since a1 < ag < -+ < ay, it follows from (1.2) that ord(b;;(¢)) > a1 for all i < j.
On the other hand, it is obvious that a; > ming 4y, ord (x,y). This implies (b).

Part (c) is similar to (a), compare to Lemma Bl.ii in [Y1]. Let iy,42,71,72 €
{1,2,...,n} be integers such that i1 # iy and j3 # ja2. Write B(iy,i2;j1,j2) for
the corresponding minor of B. After renumbering, we may suppose that i; # js
and iy # ji. Then det(B(i1,%2;j1,72)) = £(2%bi, 51 bis,jo — biy,jobisj, ), Where o €
{0,1,2} is the number of equalities 71 = ji,i2 = j» that hold. We conclude that
ord(det(B(iy,i2;j1,72)) > (a;, + ai, + aj, + a;,)/2 > a1 + az. (Here we use that

a1 <ag <---<a,and i #i9 and j; # jo.) This proves (c). O
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2. Definition of the Gross—Keating invariants for ¢ # 2

We start this section with an elementary lemma which holds without assumption
on /{.

Lemma 2.1. — Choose a basis ¥ = (¢1,...,¢,) of L. Let v1,...,vm € L be linearly
independent. The following are equivalent.

(a) There exists Ym+1,-..,n € L such that the (v;) form a basis.

(b) The matriz (y1,...,%m), expressing the v; in terms of the basis 1, contains a
m X m minor whose determinant is a p-adic unit.

(c) If S0, vivi € L for some v; € Qq, then v; € Zy.

Proof. — This is straightforward. See also [C, Chapter 8, Lemma 2.1]. O

In particular, a vector a = ) . a;1; € L is part of a basis of L if and only if
min; ord(a;) = 0. We call such vectors primitive.

We have that
21) 2@y =20Q@+y) - Q) -QW] =@ +yz+y) — (z.2) - (y.y).
If ¢ # 2, this implies that

2.2 in ord (z,y) = minord (z, z) .
(2.2) xrzlenLor (z,9) min or (z,x)

In the rest of this section, we suppose that ¢ # 2. There is a © € L for which the
minimum in (2.2) is attained. This vector x is primitive. Lemma 2.1 implies that «
can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for
¢ = 2; this is the main reason why things are more difficult for ¢ = 2.

Proposition 2.2. — Suppose that { # 2. Then there exists a basis ¥ of L such that
Qx) = Q(Z :I;il/}i) = Z biix?, where  ord(by1) < ord(baz) < -+ < ord(bpy).

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1].
The discussion before the statement of the theorem shows that we may choose ¢,
such that

ord(Q(p1)) = ord (p1,¢1) = miEnLord(:L',y).
z,Yy

Here we use the equality (2.2).
Choose @9, ...,pn € L such that ¢ = {©1,02...,¢,} is a basis of L. As before

we write Q(Y; Tipi) = D1 <;<j<n bij(P)zix;. Then

b1z bin : ~
X :b — X cer——Tp L2y gdin )y
Qz) = by <~’U1 + %0, ro + %, x ) + Q72 Tn)

for some integral quadratic form ) in n — 1 variables.
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We define a new basis by 1 = o1, and ¢; = ¢; — (b1:/2b11)¢1 for i # 1. The
choice of 11 ensures that ¥; € L, since ¢ = ord(2b11) < ord(by;). With respect to this
new basis, the quadratic form is

Q) =t ()t + QS s )

i>2

The proposition follows by induction. O

Remark 2.3. — Casscls (|C, Chapter 8, Theorem 3.1]) proves a stronger statement
than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic
forms such that every integral quadratic form is isomorphic to one of these. This
stronger statement implies that the definition of the invariants a; of Proposition 2.6
does not depend of the choice of the orthogonal basis.

We can give a simpler definition of the invariants a; in terms of a basis ¥ as in
Proposition 2.2. If v € L is an element such that Q(v) # 0, we may define a reflection
7, by

Ty (2) = — ——z(f;”;;)fy
This is the reflection in the orthogonal complement of . Clearly, 7 is defined over
Zy if and only if ord (v,v) = mingey ord (x,2) . (In fact, this also holds for £ = 2.)
Since 7, is a reflection, it is clearly invertible. The following lemma is a partial analog
of Witt’s Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic forms
over fields.

Lemma 2.4. — Suppose that ¥, ¢ € L satisfy
QW) =Qle),  ord(QU) = ord(Q(e)) = minord(Q(x).

Then there exists an integral isometry o of (L, Q) such that o(¢) = ¢. Moreover, o
may be taken as a product of reflections 7.

Proof. — This is [C, Lemma 8.3.3]. Our assumptions on % and ¢ imply that
QU +¢) + QY — ) = 2Q(¢) + 2Q(p) = 4Q(). Since ord(Q(v)) = ord (¢, 7)) =

mingey, ord (z,z) =: e, it follows that one of the following holds:

(a) ordQ(¢ + ¢) = ¢,
(b) ord Q¢ — @) =e.

Since ¢ # 2, it is also possible that both hold. If (a) holds, then 7, is integral and
sends 1 to ¢. If (b) holds, define o = 7y, 0 7y. O

Lemma 2.5. —— Suppose u,v € Z, . Then ux? + vx3 ~z, ¥% + uva3.

SOCIETE MATHEMATIQUE DE FRANCE 2007



118 I. I. BOUW

Proof. — This is proved in the second corollary to [C, Lemma 8.3.3]. We give the
idea. Since ¢ # 2, there exists a,c € Zy such that a?u + v = 1. We may assume
that a is a unit. Then

defines the equivalence of the lemma. O

Proposition 2.6

(a) Let v = (1,00, ..., %,) be an orthogonal basis of L as in Proposition 2.2 Write
Q(z) =Y, bix?. Then the invariants a; (Definition 1.2) satisfy

a; = ord(b;).

In particular, ¥ is optimal.
(b) Suppose that n is odd. Then

ord(A)=ay + -+ ap.

Proof. — Let ¢ be a basis such that the inequalities (1.2) hold. We claim that
ord (p1,¢1) = a1. Part (b) of Lemma 1.3 implies that a1 = mingey, ord (x, ). The
choice of ¢ implies moreover that ord (1, 1) = mingey, ord (x,z). The definition of
a1 implies therefore that a; = ord (¢1, ¢1).
We apply the diagonalization process of the proof of Proposition 2.2 to the basis
. Define vy = ¢ and ©; = ; — (b1;/2b11)¢1 for i # 1. One computes that
b iy

(¢j,1) =0, (Y 15) = 2L 4 2bj;, (i, ) = ——=—= + bij,
2b1y 2b11

for j # 1 and i # 1,j. The inequalities (1.2) imply that ord(¢;,%;) > a; and
2ord (¢;,1j) > a; + a;. Therefore the new basis also satisfies the inequalities (1.2).
This implies that there exists an orthogonal basis ¥ which satisfies (1.2). It follows
that the Gross-Keating invariants (ay, ..., a,) are the maximum of US(%)), where the
union is taken over the orthogonal bases and US(%p) is as in (1.1).

Let ¢ and ¥ be two orthogonal bases. Write Q(z) = b1a3 + baxd + - - - + by2? with
respect to the basis ¥ and Q(z) = dy2? + dex3 + - - - + d,,¥2 with respect to the basis
. We suppose that ord(by) < ord(by) < --- < ord(b,) and ord(d;) < ord(dy) <--- <
ord(d,). We suppose moreover that ¢ satisfies (1.2). (Such ¢ exists by the above
argument.) We have to show that 1 satisfies (1.2), also. Write C' = (¢;;) for the
change of basis matrix expressing ¢ in terms 1. As before, Lemma 1.3.(b) implies
that ord(b;) = ord(dy) = a;. Write by = ud,, for some unit u.

Suppose that ord(bz) > ord(b;). Then

n
dy = E (:flbj = ¢2,b; mod (1,

Jj=1
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This implies that v is a quadratic residue. To prove the claim, we may therefore
assume that Q(¢1) = Q(p1) in this case.
Suppose that ord(b;) = ord(bs). Then Lemma 2.5 implies that @ is Zs-equivalent to
d11? +ubyx3 +bzx3 +- - -. Hence also in this case we may assume that Q(¢1) = Q(¢1).
Lemma 2.4 implies that there exists an isometry o of ) which sends 11 to ¢;.
Then D := o~ !C fixes v;. Write

1 D
= B::
b (O Dz)’

where Dj is an (n — 1) x (n — 1) matrix. One computes that

2’)/2b1 2’}/D1
2vD} * ’

2h; 0

0 2by,

D'BD = <

Our assumption implies that D!*BD is a diagonal matrix, with diagonal entries 2d;.
This implies that D; = (0,...,0). We conclude that D restricts to an integral and in-
vertible map from the sublattice of L spanned by s, . .., %, to the sublattice spanned
by 2, ..., ¢,. This implies (a).

Part (b) follows immediately from (a). d

Definition 2.7. — Suppose that n = 3 and £ # 2. Assume a1 = a2 mod 2, and az > as.
Choose a basis ¥ = (11, 9,13) of L as in Proposition 2.2. Write b;; = %u;. We
define an invariant € = €(v) by the Legendre symbol

(2.3) €= (_“;"2) .

Lemma 2.8. — Assumptions and notations are as in Definition 2.7.

(a) The invariant e(vp) does not depend on the choice of the orthogonal basis 1.
(b) We have that € = 1 if and only if the subspace of L ®z, Q¢ spanned by 11 and
1o s isotropic.

Proof. — Let 1 = (¢1,12,%3) be a basis of L as in Proposition 2.6, in particular 1
is orthogonal and the valuation of b; = (¢;,;) /2 is equal to a;, for i = 1,2, 3.

Suppose that a; = a; mod2 and a3z > as. Write as = ay + 2. Write Q' for the
restriction of @ to the sublattice of L spanned by t; and 1)5. Then Q'(z) = byx?+byx2
is equivalent to €91 (2% + ujugf®'23) (Lemma 2.5). It follows that Q' is isotropic if
€ = 1 and anisotropic if ¢ = —1. This proves (b).

Let ¢ be another orthogonal basis and write Q(3°, z;¢;) = di2} + dya3 + dzz3. We
assume that ord(d;) = a;. Write C for the matrix expressing ¢ in terms of 1. The
argument of the proof of Proposition 2.6 together with the assumption that as < as
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implies that there exists an isometry o such that

(%] 0 0
g _IC = 0 V2 0 s
0 0 V3
where the v; are units. This shows that d; = vf b;. The lemma follows. O

3. A normal form for quadratic forms over Zo

Not every quadratic form over Zs is diagonalizable. In this section we give a normal
form for ternary quadratic forms over Z,, following [C, Section 8.4]. Cassels uses a
slightly stronger notion of integrality, namely he supposes that b;;/2 € Z,, for all
1 # 7. However, this does not make any difference.

Lemma 3.1. — Suppose £ = 2. Let QQ be a reqular quadratic form over Zs. Then @ is
Zo-equivalent to a sum of quadratic forms of the form

(3.1) 2%ux?,

fore € Z>y and uw € Z5, and

(3.2) 2°(bya? 4 uxyzo + baxs),

with e € Z>o, and u € Z5 .

The equality (2.1) holds for £ = 2, but (2.2) does not. However, (2.1) implies that

in ord 1 > minord (z,z) .
Jmin, or (r,y) + 2 minorc (z,x)

Therefore min, ye g, ord (x,y) equals either mingey, ord (x, ) or mingey, ord (x, ) — 1.

Proof. Let e = min, yer, ord (z,y). We distinguish two cases.
(a) There exists a v € L such that ord (vy,7) = e.
(b) For all v € L we have that ord (v,v) > e.
Suppose we are in case (a). Then ord (11,%;) > e, by definition. We can now
proceed as in the proof of Proposition 2.2. Namely, 2b1; = 2Q(v1) = (¥1,v1).
Therefore by, has valuation e — 1. For i # 1, we have that ord(by;) = ord (¢1,%;) > e.

Therefore
by
=Y — | =— | V1.
Pi d}z <2b11 1/ 1
is an element of L and 1, ps,...,¢, form a basis. With respect to this basis the
quadratic form Q becomes Q(x) = by 2% + Q(xa, ..., x,), for some quadratic form Q

in n — 1 variables.

Suppose we are in case (b). Then ord (y,7y) > e for all v € L. We may choose
1,19 € L such that ord (41, 12) = e. The definition of e implies that (¢1+12)/2 & L.
Lemma 2.1 implies therefore that 11,12 can be extended to a basis ¢, ..., 1, of L.
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The choice of 17 and 1 implies that the determinant of the matrix
2b1127¢  b1227°¢
b1227¢  2b927°
is a unit in Z. Therefore we can find A], X} such that

—2/\{1711 — )\%blg —+ blj =0, —2/\%bgg — /\{bm + sz =0,

for j = 3,...,n. Define ¢; = 9; — A{?/}l — )\%’wg. The choice of the )\{ implies that

(pj, 1) = (pj,2) =0, for j =3,...,n.
With respect to the basis (11,12, @3, ..., @,) the quadratic form ) becomes

Q(SC) = 2€(b11$‘f + biox1 10 + bgzﬂ?%) + Q(Jig, . ,{Cn).

This proves the lemma. O

Lemma 3.2. — Let Qa(x) = by12% + biax1m2 + boa3 be a binary quadratic form over
Zo and Lo the corresponding free Zo-lattice of rank two.

(a) If min(ord(by11),ord(bez)) < ord(bi2) then Q2 is diagonalizable.

(b) Suppose that Q2 is not diagonalizable. Then Q2 is anisotropic if and only if
Ord(blg) = ord(bu) = Ord(bgg).

(¢) Suppose Q2 is anisotropic and not diagonalizable. Then Q2 is equivalent to

2¢(2? + wywy + 23),

for some e.
(d) Suppose that Q2 is isotropic and not diagonalizable. Then Qo is equivalent to

2°2129,

for some e.

Proof. — Part (a) follows from the proof of Lemma 3.1.

Suppose that Q2 is not diagonalizable. Then ord(bi2) < min(ord(by1), ord(bez)),
by (a). Part (b) is an elementary Hilbert-symbol computation using [S, Theo-
rem IV.6).

Suppose that Q2 is anisotropic and not diagonalizable. Then (b) implies that e :=
ord(b12) = ord(b11) = ord(bez). Part (¢) now follows from an elementary computation.

Suppose that ()5 is isotropic and not diagonalizable. There exists a primitive vector
1 such that Q(v1) = 0. Lemma 2.1 together with the fact that the quadratic form
is nondegenerate, implies that there exists a vector 1o € Lo such that ¢,y form a
basis of Ly and (¢1,12) # 0. After multiplying 2 with a unit, we may suppose that
(1,12) = 2¢, for some e > 0.
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We claim that ord (¢2,12) > ord (11,12). Namely, if ord (12, ¢2) < ord (31, 1)2)
then Q- is diagonalizable by (a), but this contradicts our assumptions. Therefore

r - (1/}2a17/}2)
¢2 =1 —2 (¢1,¢2)1ﬁ1 € Lo.

Now 1,95 form a basis of L and (¢4, %) = 0. This proves (d). O

Proposition 3.3. — Let (L,Q) be a ternary quadratic form over Zq. One of the fol-
lowing two possibilities occurs.

(a) The form @Q is diagonalizable; there exists a basis such that
Q(z) = bia? + boa + b3z,  with 0 <ord(by) < ord(by) < ord(bs).
(b) The form Q is not diagonalizable; there exists a basis such that
Q(x) = u 2" 22 +212 (vadtaorstuvrd), with v e {0,1}, ;>0 and wu € 7.
Proof. — This follows immediately from Lemma 3.1 and Lemma 3.2. O

This classification is the same as the classification used (but not explicitly stated)
in [Y1, Appendix B]. Note that Yang’s matrix T differs by a factor 2 from the matrix
B we use. In particular, the invariant 3 used in [Y1, Proposition B.4] satisfies 3 > —1
rather than 3 > 0.

4. The Gross—Keating invariants for ¢ = 2

In this section we compute the Gross—Keating invariants of ternary quadratic forms
(L, Q) over Zz in terms of the normal form of Proposition 3.3. The computation of
the a; can be found in Proposition 4.1 (non-diagonalizable case) and Proposition 4.2
(diagonalizable case). The computation of € can be found in Proposition 4.9. This
section is based on [Y1, Appendix B].

We start by considering quadratic forms which are not diagonalizable. Recall from
Proposition 3.3 that if @) is not diagonalizable then there exists a basis 1 of L with
respect to which we have

(4.1)  Q(z) = uy 2" 2% + 22 (vxl + wowy +vr3), with v e {0,1}, wui € ZJ.
We do not suppose that p < po.
Proposition 4.1. — Suppose that Q is given by (4.1). Then

, if iy < 1
(a1,a9,a3) = { (i, p2, 12). Z.fpl = #2)
(p2, pias 1), if py > po.

Proof. — Lemma 1.3.(b) implies that a; = min(u,, p2). We distinguish two cases.
Suppose that p1 < pz. Then a; = py and ord(A) = py + 2p2 > a1 + a2 + a3
(Lemma 1.3.(a)). Therefore as < (a2 + a3)/2 < p2. The existence of a basis 1 as

in (4.1) implies that (p1, po, p2) € S(¢). We conclude that az = az = ps.
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Suppose that g1 > po. In this case we have that a; = us. Recall that we defined
p as the minimum of the valuation of the determinant of the 2 X 2-minors of B.
One computes that p = min(2u2, 1 + p1 + p2) = 2pe, since we assumed that g, >
p2 + 1. Lemma 1.3.(c) implies that p > a1 + as, hence as < ps. The existence of a
basis ¥ as in (4.1) implies that (u2, g2, p1) € S(¢). We conclude that (a1, az2,a3) =
(12, p2, p1). O

We now consider diagonalizable quadratic forms ). Contrary to the situation for
£ # 2, a basis ¥ which diagonalizes @ is not optimal (Definition 1.2).

Proposition 4.2. Suppose that Q is diagonalizable. Let 1 be a basis of L such that
(42)  Q(x) = bia? + boxk + b3x3, with b; = w;2", w; € ZS and py < p2 < p3.

(a) Suppose that py £ pz mod 2. Then (a1,a9,a3) = (u1, g2, 13 + 2).

(b) Suppose that p1 = p2 mod 2.
(1) Ifui+us =2mod4 or pug < po+1, then (a1, az,a3) = (p1, uo+1, uz+1).
(ii) Otherwise, (a1, az,as) = (p1, p2 + 2, 3).

The proof of this proposition is divided in several lemmas. We use the notation of
Proposition 4.2. In particular, 9 is a basis of L with respect to which @ is as in (4.2).
Let ¢ be an optimal basis, i.e., suppose that the inequalities (1.2) hold. We write
C' = (¢45) for the change of basis matrix expressing ¢ in terms of ¥. We write the
quadratic form () in terms of the basis ¢ as Q(z) = >_,, dijz;z;. In other words,
the d;; are the coefficients of the matrix obtained by dividing the diagonal elements
of C*BC by two. One computes that

(4.3) diz = ;b1 + b + ¢33

Lemma 4.3. — Suppose that Q is diagonal and p1 # pe mod2. Then (ay,az,a3) =
(h1s p2s ps + 2).

Proof. — We have already seen that a; = p1. Therefore it follows from the definition
of the a; that az > pe. We claim that as = ps. Suppose that ag > .

Write pe = 1 + 2y + 1. The inequalities (1.2) imply that ord(daz) > ag > s + 1
and ord(dss) > az > az > pg + 1. Since py # p2 mod2, it follows from (4.3) that
ord(ci2) > v+ 1 and ord(ey3) > v + 1.

We first suppose that ps > pa. Then ord(cez) > 1 and ord(cszz) > 1. But this
implies that det(C') = 0 mod 2. This gives a contradiction.

If po = p3, we proceed similarly. In this case cos = ¢32 mod 2 and ¢p3 = ¢33 mod 2.
This implies again that det(C) = 0 mod 2. We conclude that as = pus.

Since ord(A) = ord(det(B)) + 2 = u1 + po + ps + 2, it follows from Lemma 1.3.(a)
that as < ps + 2. To show that as = pg + 2 it suffices to find a basis ¢ such that
(11, p2, i3 + 2) € S(). We now construct such a basis.
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Our assumptions imply that pgs is congruent to puq or ps (modulo 2). We suppose
that us = g1 mod 2. (The case pg = pe mod 2 is similar.) Write ps = g + 27 + 1
and ps = p1 + 2A. We distinguish two cases:

— uy +u3z = 0 mod4,

— w1 +u3z =2 mod4.

In the first case define

10 2
C= ( 0 1 0
0 0 1
With respect to the new basis we have Q(z) = by 2?2 +-baz2+2 by 2123+ (b3 +222b; )22,

In the second case we define

1 0 2
C=| 0 1 2V
00 1

= bll’% +b2.’ljg +2’\+1b1w1w3 + (bg +22’\b1 +
220Ny )22 4 227 hywoxs. Tt is casy to check that the basis ¢ corresponding to C
satisfies (1.2) for a1 = u1, a2 = p2 and az = us + 2. This proves the lemma. O

With respect to the new basis we have Q(z

~

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of
Lemma 4.3.

Lemma 4.4. — Suppose that Q is diagonalizable, 3 = po mod?2 and pg < po + 1.
Then (a1, az,a3) = (g1, o + 1, 3 + 1).

Proof. — Since a; = py and ord(A) = py + p2 + ps + 2 it follows from Lemma 1.3
that a; + 2a2 < ay +as +az < py + po + p3 + 2 < g1 + 2p2 + 3. This implies that
az < po + 1.
We now construct a basis ¢ such that (g1, po+1, us+1) € S(e). The lemma follows
from this. Let C be the corresponding change of basis matrix. Write po = pq + 2.
If po = pg define

1 27 27
c=10 1 0
0 0 1
With respect to the new basis we have Q(z) = byz? + (227by + ba)x3 + 2710y (z122 +

:171:53) + (bg + 227b1){L’§ + 21+2’751ZL'2$3.
If s = po + 1 and ug + ug = 2 mod 4 define

1 27 27
c=(0 1 1
0 0 1

With respect to the new basis we have Q(z) = b1a? + (bg + 227b1 )23 + 27 by (2122 +
:1:13:3) -+ (b3 + 227b1 + bg)%‘% + (2274—1()1 -+ 2b2).’1)2.’L‘3.
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If ps = po + 1 and ug + ug = 0 mod 4 define

1 27 27
cC=10 1 1
0 1 2

With respect to the new basis we have Q(x) = byx?+(227b; +by+b3)23+27 10y (2120 +
.131%3) —+ (4b3 —+ 2271)1 + bz)?ﬁ% + (227+1b1 + 2by + 4b3):1,‘2:L‘3.
In each of these cases one checks that (p1, p2 + 1, u3 + 1) € S(¢p). O

Lemma 4.5. — Suppose that Q is diagonal, 13 = pe mod?2 and uy + ug = 2 mod 4.
Then (a1, az,a3) = (u1, po + 1, ug + 1).

Proof. — By Lemma 4.4 we may assume that ps > po+2. We claim that as < ps+1.
Suppose that as > ps+2. As before, we suppose that ¢ is an optimal basis. As before,
we write C' = (¢;;) for the change of basis matrix and D = C*BC = (d;;) for the
matrix corresponding to the new basis. Write po = p1 + 27.

The assumption ag > ug + 2 implies that ord(dze) > az > p2 + 2 and ord(dss) >
az > as > po + 2. It follows from (4.3) that ord(ci2) > v and ord(ey3) > . Suppose
that ord(ci2) = 4. Then ord(caz) = 1 and doz = 2#2(uy + u2) #Z 0 mod 2#2F2, This
gives a contradiction. Similarly, we obtain a contradiction if ord(c;3) = 7. Therefore
ord(cyj) > 7 for j = 2,3 and daa = c3yb2 mod 2#272. Since ord(das) > p2 + 2 and
ord(b) = 2, we conclude that ord(caz) > 0. Similarly, ds3 = c33b2 mod 2#2F2; this
implies that ord(cez) > 0. But then det(C) = 0 mod2. This gives a contradiction.
We conclude that as < uo + 1.

To prove the lemma, we construct a basis ¢ such that (u1, 2 + 1, 43 +1) € S(¢p).
We distinguish two subcases:

— p3 = p1 mod 2,

— p3 # 1 mod 2.

Suppose that 3 = p; mod 2. Write po = p1 + 2y and ps = p1 + 2A. Let ¢ be the
basis of L corresponding to the change of basis matrix

1 2r 2
cC=|0 1 o0
0 0 1

With respect to the new basis we have Q(z) = b12? + (227by + ba)x3 + 27T bz 20 +
2’\+1b1x1x3 + (b3 + 22)\1)1)1'% + 27+)‘+1b1$2$3.

Suppose that pg #Z pu; mod 2. Write po = 1 + 2y and pug = pu; +2A+ 1. Let ¢ be
the basis of L corresponding to the change of basis matrix

1 2v 2
C=[0 1 2\
0 0 1
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With respect to the new basis we have Q(z) = byz? + (227by + ba)22 + 27 bz 20 +
2/\+1b1$11‘3 -+ (b3 + 22>\b1 + 22()\_7)b2).1}§ + (27+)‘+1b1 -+ 2>‘77+1b2)$2§£3.
In cach of these cases one checks that (1, pue + 1, 43 + 1) € S(ep). O

Lemma 4.6. — Suppose that Q is diagonal, p11 = po mod 2, ps > po+2 and uy +us =
0mod4. Then (a1, az,a3) = (1, p2 + 2, u3).

Proof. Write po = py + 2v. We already know that a; = p;. We claim that
ag < pg + 2. Suppose az > ps + 3. The same reasoning as in the beginning of the
proof of Lemma 4.4 shows that we may assume that ps > ps +4. If cog = o3 =0
mod 2, we conclude as in the proof of Lemma 4.5 that det(C') = 0 mod 2. This gives
a contradiction, hence either c¢oy or co3 is a unit.

Suppose that cgo is a unit. (The argument in the case that cog is a unit is similar,
and we omit it.) Then ord(cj2) = . One computes that

(4.4) diz = 2¢19¢11b1 + 221 Cazby mod 24273,
It follows from (1.2) that 2ord(di2) > a1 + az > p1 + p2 + 3 = 241 + 27 + 3. Hence
(4.5) ord(dig) > p1 +7 +2.

Recall that Lemma 1.3.(b) implies that ord(di;) = as.
First suppose that py < o, that is v # 0. Since dy; has valuation ay, ¢1; is a unit.
It follows from (4.4) that ord(dy2) = p1 + v + 1. This contradicts (4.5).
Now suppose that iy = po. Since di1 = c39by + ¢5,ba mod 2t1+1 - Since dy; has
valuation a; = puy, it follows that either
(i) c12 =1 mod?2 and c2; =0 mod2, or
(ii) ¢12 = 0mod 2 and c¢p; = 1 mod 2.

Since ord(di2) > p1 + 2, it follows from (4.4) that (i) holds and that ¢;; = 0 mod 2.
One computes that

doz = 2¢19¢13b1 + 209909300 = 2¢13b1 + 2¢23b2 mod 2“1+2,
since cj9 and cgo are units. It follows that c¢13 = co3 mod2. But this implies that
det(C) = 0mod 2. (In case u; + uz = 4 mod 8 one could alternatively argue as in the
proof of Lemma 4.5.)

Let ¢ be the basis of L corresponding to the change of basis matrix

1 27 0
C=10 1 0
0 0 1

Then byy(p) = 0 mod 2#272. With respect to the new basis we have Q(z) = bz} +
(227by + by)ad + 27 bz 2o + byad. Therefore (p1, p2 + 1, u3) € S(¢@). This proves
the lemma. O
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The following proposition is an immediate consequence of the computation of the
invariants a;. It illustrates that the a; satisfy similar properties for ¢ = 2 and ¢ # 2,
which is not so clear from the definition.

Proposition 4.7. — Let Q) be a ternary quadratic form over Zg; for £ > 2. Then
ord(A) = a1 + a2 + as.

Proof. — For ¢ # 2 this is Proposition 2.6.(b). For ¢ = 2 the theorem follows from
the Propositions 4.1 and 4.2. O

In the rest of this section we define the Gross—Keating invariant € for £ = 2 and
show that it is well defined (compare to Lemma 2.8).

Definition 4.8. — Suppose that a1 = az mod2 and as > ay. Let ¢ be an optimal
basis. We define € = e(¢) by € = 1 if the subspace of L ®z, Q2 spanned by ¢; and @2
is isotropic, and € = —1, otherwise.

Proposition 4.9. — Suppose that a; = as mod 2 and az > as.
(a) The invariant € does not depend on the choice of the basis.
(b) (i) If Q is not diagonalizable we may write Q(z) = w21 a? + 212 (vl +
xox3 +vxd) with v € {0,1} and py > po. In this case

e=(—1)".

(i) If Q is diagonalizable we may write Q(x) = u12M1 2% + u222 23 + u32+3 23
with uy + us = 0 mod 4, p = pe mod 2 and pz > po + 2. We have that

€ = (—1)wmtu)/s,

Proof. — The fact that one of the two cases of (b) holds follows immediately from
Propositions 4.1 and 4.2.

Suppose that @ is not diagonalizable. Write Q(x) = u12M a? + 212 (va + xow3 +
va3), as in the statement of the proposition, and let 1) be the corresponding ba-
sis. Write Q)2 for the restriction of @) to the sublattice spanned by the basis vectors
¥a,1%3. Lemma 3.2 implies that Q2 is isotropic if and only v = 0. This implies
that e(¢p) = (—1)".

We now show that e is well defined in this case. It suffices to show that e(p) =
e(ep) for optimal bases ¢ and 1) with respect to which @ is in a normal form as
in Proposition 3.3. By assumption, @ is not diagonalizable. (In fact, it follows
from Proposition 4.2 that no quadratic form Q(x) = w12t 2% + 212 (vad + zoxs +
vz?) with v € {0,1} and py > po is diagonalizable. Hence we could have dropped
this assumption from the statement of the proposition.) Write Q'(z) = uj2*1 2} +
212 (073 + mows 4 v'x3) for Q expressed with respect to the basis . Since A(Q) =
A(Q') we have that u; (4v? —1) = u} (4(v")? —1), therefore v = v’ implies that u; = u].
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Hence, to show that () = €(1)), it suffices to show that v = v'. We assume that
v =1 and v = 0, and derive a contradiction.

The basis vector g is isotropic. Write o = 191 + c21b2 + c31b3. The fact that
Q(p2) = 0 implies that p1 = pe mod2. Moreover, it follows that ord(c;) > (w1 —
t2)/2 > 0 for j = 2,3. Since pg is primitive, it follows that ¢; = 1 mod2. An easy
computation shows that ord (y2, ;) > po for i = 1,2,3. In particular ord (@2, p3) >
io. But this contradicts the assumption that ord (@2, ¢3) = ps.

Next we assume that @Q is diagonalizable, and let Q(x) be as in the statement
of (b.ii). Write 9 for the corresponding basis of L. Let Q2 be the restriction of
Q to the subspace spanned by 11,12. Then Q2 is isotropic if and only if — det(Q)
is a square ([S, Theorem IV.6]). It is easy to see that this happens if and only if
uy + ug = 0 mod 8.

We now show that € is independent of the choice of the optimal basis in this case.
Let ¢ be an optimal basis. Let C' = (¢;;) be the corresponding change of basis matrix
expressing ¢ in terms of . Write 1 = po + 27.

We suppose that po > p1, that is v > 0. (The case p1 = peo is analogous and left to
the reader.) We use the notation of the proof of Lemma 4.6. In particular, we write
Q(z) = >, dijziz; for the representation of () in terms of the basis .

We showed in the proof of Lemma 4.6 that either cos or cog is a unit. Suppose
that cgs = 0 mod 2 and co3 = 1 mod 2. Tt follows that ord(dss) > a3z = ps > u2 + 3.
Therefore (4.3) implies that ord(ci3) = . We showed in the proof of Lemma 4.6
that ¢;; is a unit. Since dig = 2c11c13b1 + 2¢21¢23b0 mod 2431 we conclude that
2ord(dy3) = 2 + 2y + 2u1 = w1 + pz + 2. (Here we use that v > 0.) But this
contradicts 2ord(dy3) > a1 + a3 = pu1 + ps > p1 + pe + 3. We conclude that coo is a
unit. Recall from the proof of Lemma 4.6 that this implies that ¢;2 = 1 mod 2 and
co1 = 0 mod 2. Therefore the determinant of the submatrix

C’: < C11  C12 >
C21 €22
~—1

D- ( ¢t )

0 1

With respect to the basis corresponding to C'D, the quadratic form @) becomes Q(x) =
(by + 62b3)a? + (by + 63b3)x3 + 281b3x1 22 + x3(other terms), for certain 81,02 € Zs.
Since ord(bs) > ord(bz) + 3 this implies that the subspace spanned by ¢ and @3 is
isotropic if and only if the space spanned by 1, and s is isotropic. O

of C' is a unit. We may define

5. Anisotropic quadratic forms

The goal is to classify all anisotropic ternary quadratic forms over Zy, starting from
the normal form of Proposition 3.3. We will see that for anisotropic forms we may
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choose an optimal basis ¢ so that ord(Q(y;)) = a;, similar to what we had for £ # 2
(Corollary 5.8).

Proposition 5.1. — Let Q be a ternary quadratic form over Q. Write Q(x) = byx? +
box3 +b3xs. We denote by det(Q) = bybobs the determinant of Q. Then Q is isotropic
if and only if

(—1.—det(@)) = [J(i.0;).

i<j

Here (-,-) denotes the Hilbert symbol.

Proof. — This is [S, Theorem IV.6.ii]. O
Proposition 5.2. — Let Q be a ternary quadratic form over Zs which is not diagonal-

izable. Let v be an optimal basis such that Q(z) = ui2 x? + 212 (va3 + woxs + va3)
with v € {0,1}. Then Q is isotropic if and only if v =0 or gy = po mod 2.

Proof. — If v = 0 then @ is obviously isotropic. Therefore suppose that v = 1. To
decide whether @ is isotropic, we may consider @) as quadratic form over Qy. We have
Q(z) ~g, w2 x? + 242 (23 + 323). The proposition follows from Proposition 5.1 by
direct verification using the formula for the Hilbert symbol [S, Theorem IIL.1]. O

Lemma 5.3. — Let QQ be a ternary quadratic form over Zy. We do not assume that
¢ = 2. Suppose that ay = as = a3z mod2. Then Q) is isotropic.

Proof. If @ is not diagonalizable then the lemma follows from Proposition 5.2,
since (a1, az,a3) € {(p1, p2, p2), (p2, pa, 1)}

Suppose that @ is diagonalizable. Write Q(x) = uil*1 23 + ualt2 2% + uglftsx3. If
¢ # 2 we have that u; = a; hence py = po = us mod 2. To show that @ is isotropic,
it suffices to consider @ over Qp. After multiplying the basis vectors by a suitable
constant, we may assume that p1 = ps = pg = 0. The lemma now follows immediately
from Proposition 5.1, since the Hilbert symbol is trivial on units for ¢ # 2.

Suppose that £ = 2 and @ is diagonalizable. Proposition 4.2 implies that pu; =
o = pz mod2 and u; + us = 0 mod4. As for £ # 2, it is no restriction to suppose
that Q(x) = w123 +usw3 +usx3. One computes that this quadratic form is anisotropic
if and only if u; = uy = ug mod 4. Hence in our case @ is isotropic. O

For future reference we record from the proof of Lemma 5.3 when a diagonal ternary
form over Z, is anisotropic.

Lemma 5.4. — Let Q(x) = w12 a? + up2t22% + uz2t3z% be a diagonal, ternary
quadratic form over Zs. Suppose that 1y = po = psz mod 2. Then Q is anisotropic if
and only if uy = us = uz mod 4.
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Lemma 5.5. — Let Q(z) = w12 a? + up2t2x3 + uz2t3z3 be a diagonal, ternary
quadratic form over Zs. Suppose that 1 = po mod 2 and ps # 1 mod 2.

(a) Suppose that uy = uz = uz mod 4. Then Q is anisotropic if and only if us = +u
mod 8.

(b) Suppose that the u; are not all equivalent modulo 4. Then Q is anisotropic if
and only if us = +3u; mod 8.

Proof. — The proof is similar to the proof of Lemma 5.3 and is left to the reader. O

Notation 5.6. — Let QQ be a ternary quadratic form with Gross-Keating invariants
(a1,a2,a3). For every 1 <i < j <3 we define
ai + “”1

3y = [

where [a] is the smallest integer greater than or equal to a.

Theorem 5.7. — Let Q(z) = u12M 2% + ug2t223 + uz2t2 23 be a diagonal anisotropic
quadratic form over Zo with p1 < ps < ps. Then one of the following cases occurs.

(a) Suppose p1 = pz # pz mod2 and uy = 3uzmod8. Then (ai,az,a3) =
1, 2, 3 + 2) and ay £ as mod 2. There exists an optimal basis with respect
ey
to which

Qz) = 2“"ule + 2%2q513 + 2018 21 5 + 2“3u1x§.

(b) Suppose w1y = p3 # pzmod2 and uy = uzmod4. Then (ai,az,a3) =
(1, p2s i3 + 2) and ay; # a2 mod 2. Moreover, us = u; mod4 if uz = u; mod8
and uy = —uy mod4 if us = buy mod8. There exists an optimal basis with
respect to which

Q(x) = 2" upa? + 2%2ugad + 22wy a2 + 29 upwaws + 2% ugvas.

Here v = (u1 +u2)/2 if uz = ug mod4 and v = (3us +u2)/2 if ug = —uy mod 4.
(c) Suppose p1 # po = pz mod 2. Then (a1, az2,a3) = (@1, p2, 13 + 2) and az # a
mod 2. The quadratic form with respect to an optimal basis is as in (a) and (b)
with the role of x1 and xs reversed.
(d) Suppose py = po mod2 and po = pg. Then (a1,a2,a3) = (p1, p2 + 1, us + 1)
and a1 # az mod?2. Moreover, uy = us = ugz mod4. There exists an optimal
basis with respect to which

Q(z) = 2"'1’11133% + 2“'2122:0% + 20394 (129 + 2123) + 2028, Toms + 2“‘*1)31'3.

Here v; = (uy +u;)/2 fori=2,3.
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(e) Suppose p1 = ps mod2, us = s + 1 and u; = ug mod4. Then (a1, az,a3) =
(1, p2 + 1, p3 + 1) and az # ap mod 2. Moreover, uz = u; mod8 if uz = uy
mod4 and us = buy mod 8 if us = —uy mod4. There exists an optimal basis
with respect to which

Q) = 29 ura? + 2%20922 + 20wy (1120 + x123) + 2°Pvowows + 233

Here vy = (u1 + u2)/2 and vz = (u1 + ug)/2 (resp. (3uy + uz)/2) depending on
whether us = u; mod4 or not.

(f) Suppose p1 = pia mod 2, uz = po + 1 and ug = —uy mod4. Then (a1, a2,a3) =
(w1, p2+ 1, u3+ 1) and a1 = az mod 2. Moreover, ug = 3u; mod 8. There exists
an optimal basis with respect to which

Q(z) = 2% uyx? + 2“2'02:5% -+ 2513u1(;v19:2 +x123) + 2023 00wz + 293313,

Here vy = (u1 + ug + 2u3)/2, veg = (u1 + ug + 4us)/2 and vs = uy + 2us.

(g) Suppose p1 = po = pzmod2 and u; = uz mod4 and pz > ps + 2. Then
(a1,a92,a3) = (p1, 2+ 1, p3 + 1) and az # a1 mod 2. Moreover, uz = u; mod4.
There exists an optimal basis with respect to which

Q(x) = 2" uyx? + 2°2v23 + 200201 2y g + 203wy 25 + 20U mows + 293323

Here v; = (u1 +w;)/2 fori=2,3.

(h) Suppose p1 = p2 # pzmod?2 and uy = ug mod4 and pz > pe + 2. Then
(a1,a2,a3) = (u1, p2 + 1, u3 + 1) and az # a1 mod2. One of the following two
cases holds:

ue = w1 mod 8 and uz = u; mod 4,
ug = Sup mod 8 and us = —uqp mod 4.

There exists an optimal basis with respect to which
Qz) = 2‘“u1xf + 2“21123:% + 200y s + 2513u1x1x3 + 252302302353 + 2“3vgx§.
Here vy = (u1 +u2)/2 and vz = (u1 +u3)/2 (resp. vs = (3u1 +u3)/2) depending
on whether w1 = usz mod4 or not.
(i) Suppose p1 = po # pzmod2, pus > pz + 2 and uz = 3u; mod8. Then
(ar,a2,a3) = (p1, o + 2, u3) and ay = az mod 2. There exists an optimal basis
with respect to which

Q(x) = 2% uyx? + 2% vpa2 4 202w 2 2o + 2% Uz,

Here vy = (u1 + ug)/2.
Proof. — This follows from the results of Section 4 together with the Lemmas 5.4,
5.5. O

Corollary 5.8. — Suppose that Q) is anisotropic. Then there exists an optimal basis
such that

ord(bii(¢)) = a;
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fori=1,2,3.
Proof. — This follows immediately from Theorem 5.7 (diagonal case) and Proposi-
tion 5.2 (non-diagonal case). O

In Section 6, we give a more conceptual proof of Corollary 5.8. In fact, we prove
that any optimal basis has the property in Corollary 5.8. The following lemma gives
a list of the small cases.

Lemma 5.9. — Let QQ be an anisotropic ternary quadratic form over Zs and suppose
that as < 1. Then one of the following possibilities occurs.
(a) We have (a1,a2,a3) = (0,0,1). In this case Q is not diagonalizable; it is of the
form
Q(z) = 23 + z1m2 + 25 + uz223.
(b) We have (a1,a2,a3) = (0,1,1) and Q is not diagonalizable. Then Q is of the
form
Q(x) = wya? + 2(x2 + zox3 + 7).
(¢) We have (a1,a2,a3) = (0,1,1) and Q is diagonalizable. Then Q is as in Theorem
5.7.(d) with a1 = d13 =0 and az = az = d23 = 1.

6. Alternative version of the Gross—Keating invariants for anisotropic
forms

We fix an arbitrary prime number ¢ and a free quadratic module (L, Q) over Z;,
of rank n. We assume that (L, Q) is anisotropic, i.e., that Q(¢)) = 0 implies ¢ =
0. Under this assumption, there is an alternative definition of the Gross—Keating
invariants and a very useful characterization of optimal bases; see the remark at
the end of section 4 in [GK]. In this section we do not suppose that n = 3 to
streamline some arguments. Recall that n > 5 implies that (L, Q) is isotropic ([S,
Theorem IV.6]). Therefore the only additional case is anisotropic quadratic forms in
four variables.

We define a function v : L — Z U {occ} by the rule

v() := ordy Q).
For ¢ € L and x € Z,, we have

(6.1) v(z) = 2orde(x) + v(1).
Lemma 6.1. The function v satisfies the triangle inequality
(6.2) v(y +4") = min(v(y), v()")).

Moreover, if the inequality in (6.2) is strict we have v(y)) = v(y').
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Proof. — If 4 and ¢’ are linearly dependent the claim is obvious. We may hence
assume that they are linearly independent. For z,y € Z, we write

Q(z + y') = ax® + y°b + cxy.
Suppose that v(y + ') < v(¥),v(¥'). Then orde(a + b+ ¢) < orde(a),orde(b). The
usual triangle inequality for ord, implies
ordg(c) = ordg(a + b+ ¢) < ordg(a), ords(b).

Lemma 3.2.(b) implies that (L, Q) is isotropic. This and proves (6.2). The second
assertion of the lemma follows from (6.2), applied to a suitable combination of the
vectors 1), &9’ and ¥ + ¢'. O

Remark 6.2. — 1f n < 3, one gets an alternative proof of Lemma 6.1 by noting that
(L, Q) is represented by the quaternion division algebra D over Qy, equipped with its
norm form. The function v is then the restriction of the standard valuation of D.

Let ¥ = (1;) be a basis of L. For i =1,...,n, let L,y C L be the subspace (of
rank ¢ — 1) spanned by 91, ...,%;—1. We define a function v; : L/L;—1 — Z>o U {00}
by the rule

0i( + Li—1) := max(v(y)")|[¢)" € ¢+ L;i—1).
Note that v;(1)) = oo if and only of ¥ € L; ;.
Definition 6.3. — A basis ¥ = (¢;) of L is called ideal, if

v(thi) = Ui (i + Li—1) = 11;161111(@(1/1 + Li-1))
holds for : = 1,...,n.

It is clear that there exists an ideal basis of L. The next lemma gives a useful

characterization of an ideal basis.

Lemma 6.4. A basis i = (¢;) of L is ideal if and only if

(6.3) v) < vlyy) fori <3,

and for all (z;) € Z} we have

(6.4) ’U(Z Ibl/jl) = min v(xh;).

Proof. — Let @ = (¢;) be a basis of L. If (6.3) and (6.4) hold, then one easily checks
from Definition 6.3 that ) is ideal.

Conversely, suppose that 1 is ideal. The inequality (6.3) follows directly from
Definition 6.3. It remains to prove (6.4). Fix (x;) € Z} and k with 1 < k < n. Set
Ok = Y cp it We claim that
(6.5) v(pk + zrtr) = min(v(ek), v(zke)).

From this claim, (6.4) follows by induction.
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For k = 1, the claim is obvious. To prove it for £ > 1 we may assume that it holds
for k' = k — 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is
greater than or equal to the right hand side. Suppose that the left hand side is strictly
greater than the right hand side. Then we have v(py) = v(xgr). Using (6.1), (6.3)
and the claim for &' = k — 1, we find that ords(xy) < orde(wx;) for all ¢ < k. After
dividing by x, we may therefore assume that x; = 1. However, by the definition of
an ideal basis we have

v(pr) = v(r) > v(er + Yr).

This contradicts our assumption and proves the claim. O
Let us fix an ideal basis ¥ = (¥1,...,%y) of L, and set
a; :=v(;), it=1,...,n

We want to show that the a; are the Gross—Keating invariants of (L, Q). We first
check that (a;) lies in the set S (Section 1). For this we write the quadratic form @

as follows:
Q (Z wi’dh’) = Z bijl'?;:L’j.

i<j
We set a;; := ordg(b;j). Note that a; = ay.

Proposition 6.5. — For 1 <i < j <n we have

a; + a;
Qi 2 T
Proof. — The case i = j being trivial, we may assume that ¢ < j. Our proof is by

contradiction. First we assume that 2a;; +1 < a; +a;. We set ¢ := max(a;; —a; +1,0)
and look at the right hand side of

QUi + 1b;) = bl  + by + by (°.
The three terms of this sum have f-valuation a; 4+ 2¢, a; and a;; + ¢, respectively. By
our choice of ¢ we have
a;j + ¢ < min(a; + 2¢, a;).
It follows that
v(lY; + ;) = ai; + ¢ < min(v(lP;), v(Y;)).

This contradicts the triangle inequality and excludes the case 2a;; + 1 < a; + a;.

It remains to exclude the case 2a;; + 1 = a; + a;. Since a; < a; we have ¢ 1=
a;; —a; > 0. Let x € Zf be a f¢-adic unit. Then
(6.6) QUEarp; + 1pj) = bil*a® + bjj + by lx.
By our choice of ¢ we have

a; +2c=a; —1=a; +c
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We see that on the right hand side of (6.6), the first and the last term have the
minimal valuation a; — 1, while the middle term has valuation a;. Therefore, for an
appropriate choice of x, we get

v(léxp; + 1) > a; > min(v(faxy;), v(1;)).
But this contradicts Lemma 6.4, (6.4). The proposition follows. |
Proposition 6.6. — An ideal basis is also optimal (Definition 1.2). Moreover, if ¥ =

(t0;) is an ideal basis of L, then (a; = v(y;)) are the Gross Keating invariants

of (L, Q).

Proof. — The previous proposition says that (a;) is an element of S. It remains to
show that (a;) is a maximal element, with respect to the lexicographical ordering.

Let @' = (¢!) be an arbitrary basis of L, and let (a}) be an element of S(¢)’)
(Section 1). We will show that aj < ay, for k =1,...,n, which proves the proposition.
Write

G =Y wigy,  with () € GLa(Ze),

J
The condition (a}) € S(3’) together with Lemma 6.4 shows that

(6.7) a; <v(y)) = min(a; + 2orde(w;;)).
J
Using that (z,5) is invertible, one shows that there exists at least one pair of indices
(1j) with k <1i and j < k such that z;; is a unit. Applying (6.7) and (6.3) we get
a, <a; <aj <ay.
This is what we had to prove. O

Corollary 6.7. — Let 9 = (1;) be an ideal basis of L and (y;) € Q} with y; # 0. Set
Y = (), where ) = yip; € L @z, Qu, and let L' denote the Z¢-lattice spanned
by . Let (a;) be the Gross-Keating invariants of L.

(a) The basis ¥' of L' is ideal.

(b) The Gross—Keating invariants of L' are the numbers

’
a; = a; + 2ordg(y;),
in some order.

Proof. Choose an integer r such that ¢"y; € Zy, for all i. For (z;) € Zj, Lemma 6.4

shows that
v (Z 55ﬂ//§;> = v(Z ”xz'yﬂ/%) —2r
i A

= min(v(¢"zyiv;)) — 2r

= min(v(z;1;)).
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Again by Lemma 6.4 we conclude that 1’ (in some order) is an ideal basis of L’. This
proves (a). Part (a) of the corollary follows now from the previous proposition. O

Remark 6.8. — Corollary 6.7 (a) is false without the assumption that (L,Q) is
anisotropic. Consider, for instance, the (isotropic) quadratic form Q(z) = 23 —x3+423
over Zy. Dividing the last vector of the standard basis by 2 we obtain the quadratic
form Q'(z) = 2% — 23 + 2%. According to Proposition 4.2(b), the Gross—Keating

invariants of @ are (0, 2,2), while the invariants of Q" are (0,1, 1).

Proposition 6.9. Let (L,Q) be an anisotropic free quadratic module over Zy. Then
every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. — Let (ay,...,ay) be the Gross—Keating invariants of (L, Q), and let v
be an optimal basis. Then v(v;) = a;.

Proof. — Let v be an optimal basis and suppose that v(y;) > a;, for some i. It
follows from the definition of the Gross—Keating invariants (Definition 1.2) that there
exists a j # i such that

Ord(bi]‘) = (ai + (ll)/2
In particular, we have that a; = a; mod 2. Lemma 5.3 implies thercfore that aj #
a; mod 2 for all k& # 4,7, since (L, Q) is anisotropic. (The case that n = 4 easily
reduces to the case that n = 3 by using the existence of an ideal basis.)

Consider the restriction @1 of Q to Ly = (14, ;). We distinguish three cases. First
suppose that a; = aj. Then (L, Q1) is isotropic by Lemma 3.2.(b).

Next we suppose that a; < a;. Then i < j. We have already seen that ay #
a; mod 2 for all k # 4, j. Renumbering the indices, if necessary, we may assume that
a; < aj41 and a;— < aj. Define (@;) by @; = a; +1 and a; = a; — 1, and a;, = ay, for
all k # ¢,j. Then (ax) € S(v). This contradicts the definition of the Gross—Keating
invariants.

Finally, we suppose that a; > a;. Then ¢ > j. If v(¢);) > a;, we interchange i
and j and obtain a contradiction by the previous case. Therefore v(y;) = a;. Since
a; = a; mod 2, Lemma 3.2.(b) implies that L; is isotropic. This gives a contradiction.

We conclude that v(v);) = a; for all i. O
Proof of Proposition 6.9. — Let @ be an optimal basis which is not ideal. Lemma 6.10
implies that v(v;) = a; for all i. Let k be minimal such that there exists a

p = ZL xi; € L with v(p) # min;(z;4;). Lemma 6.4 implies that k exists. It
follows from the triangle inequality that v(p) > min;(x;1);). Write ¢ = Zf;ll ;.
The choice of k implies that v(@) = min;< v(;9;). Since v(p) = v(P + TxPr), we

conclude from Lemma 6.1 that v(p) = v(aptr). This implies that

(6.8) 2ord(x;) + a; > 2ord(xy) + ak.
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In particular, ord(x;) > ord(xy), for all i. Therefore it is no restriction to assume
that zp is a unit.
We define a new basis ¢ = (¢;) by ¢; = ¢; if i # k and ¢ = ¢. Write
Q(Z yi%) = Zl;ijyiyj~
i i<j

One computes that

l~)k _ Q:I)jbjj + Zi;éj bijfL‘i for j < k,

J 21 bijxi fOI‘j > k.

Equation (6.8) implies that ord(b;r) > (a; + ax)/2. Therefore ¢ is again an opti-
mal basis. But v(pr) = v(p) > min; v(a;¢;) = v(zgs) = ax. This contradicts
Lemma 6.10. O

Lemma 6.11. — Let M C L be a sublattice, i.e., a sub-Zg-module of rank n. Let
by,..., b, be the Gross-Keating invariants of (M,Q|ar). Then b; > a;.

Proof. — We choose ideal bases (¢1,...,%y,) for L and (¢1,...,¢y,) for M. Then
a; = v(¢;) and b; = v(p;). Let us fix an index ¢ € {1,...,n} and show b; > a;. For
an element ¢ = >, x;1p; of L, we set ¢':= 3", , 2;¢; and ¢ =325, x%;. Then
P = + " and v(y)"”) > a;. Since the vectors ¢}, ..., ¢} lie in a subspace of rank
i — 1, there exist xy,...,x; € Z¢, not all zero, such that ngi :L'jgo; = 0. Then
D = D ui.
J<i J<i
Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to
the right hand side, we conclude that

min(b; + 2orde(x;)) = min(v(¢]) + orde(a;)) > min(a; + 2orde(x;)).
J<i J<i J<i

For the index j for which ord(x;) takes its minimal value we get a; < b; < b;. This
proves the lemma. (|
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS
by

Michael Rapoport

Abstract. — Let (f1, f2, f3) : E — E’ be a triple of isogenies between supersingular
elliptic curves over F,. We determine when the locus of deformation of (f1, f2, f3)
inside the universal deformation space of (F, E’) is an Artin scheme, and in this case
we give a formula for its length. These results are due to Gross and Keating.

Résumé (Déformations d’isogénies de groupes formels). — Soit (f1, f2, f3) : E — E’ un
triplet d’isogénies entre des courbes elliptiques supersinguli¢res sur Fp,. Nous donnons
un critére pour le lieu de déformation de (f1, f2, f3) dans I'espace de déformations
universel de (F,E’) d’étre un schéma artinien, et nous donnons dans ce cas une
formule pour sa longueur. Ces résultats sont dis a Gross et Keating.

Let A and A’ be abelian varieties of the same dimension n over Fp. The universal
deformation space M of the pair A, A’ is the formal spectrum of a power series ring in
2n? variables over W (F,). Given an isogeny f : A — A’ one may pose the problem of
determining the maximal locus inside M, where f can be deformed. More generally,
given an r-tuple f1,..., fr of isogenies from A to A’, one may ask for the maximal
locus inside M where f1,..., f, deform. And, one may ask when this maximal locus
is the spectrum of a local Artin ring, and if so, to give a formula for its length.

These questions are very difficult and it even seems likely that no systematic an-
swers exist in general. In this chapter we consider the case n = 1, i.e., when A and A’
are elliptic curves. More precisely, we present the solution due to Gross and Keating
[GK] to this problem when A and A’ are supersingular elliptic curves. Their proof
is a clever application of results on quasi-canonical liftings and their endomorphisms.
Unfortunately, some parts of their proof are not so easy to implement in the case
p = 2, which requires special attention. In fact, I only managed to deal with the case
p = 2 by making use of the classification of quadratic forms over Za, comp. [B], and
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Key words and phrases. — Formal group, quasi-canonical lifting, Kummer congruence, Gross-Keating
invariants.
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140 M. RAPOPORT

using a case-by-case analysis. Fortunately, S. Wewers afterwards found a uniform ar-
gument for this part of the proof which makes use of deeper properties of anisotropic
quadratic forms over Zy. This proof is presented in the next chapter. We decided to
present both proofs because the more pedestrian approach here gives insight into the
subtleties of the Gross-Keating invariants in the case p = 2.

Let us comment on the general problem above in another example, the case of
ordinary elliptic curves, comp. [Me2]. The case when A and A’ are ordinary elliptic
curves has been known for a long time and is part of the Serre-Tate theory of canonical
coordinates, comp. [Mes, Appendix]. Let A and A’ be ordinary elliptic curves and
fix isomorphisms

A[poo]m = Qp/va A/[poo]et = QP/ZP»

which then induce, via the canonical principal polarization, isomorphisms
A[POO]O = @"n A/[POO]O = @7n~
The isogeny f : A — A’ determines
(z0,21) € Zf)

where f is given by multiplication by z; on the étale part and by multiplication by
zo on the connected part of A[p>]. On the other hand, we have

M = Spf W(F,)[t,t']

(Serre-Tate canonical coordinates). Then setting g = 141¢, ¢’ = 1+, the locus inside
M where f deforms is defined by the equation

cf. [Mes, Appendix, 3.3], comp. also [Me2, Example 2.3]. On the other hand, it is
easy to see that, for any r-tuple of isogenies fi1,...,f, : A — A’, the locus where
fi,..., fr deform is never of finite length, comp. [Go2, proof of Prop. 3.2]. These
remarks show that already the case n = 1 in the above-mentioned general problem
defies a uniform solution.

I wish to thank I. Bouw, U. Gortz, Ch. Kaiser, S. Kudla, S. Wewers and Th. Zink
for their help in the preparation of this manuscript, and the referce for his remarks.

1. Statement of the result

Let E and E’ be supersingular elliptic curves over ]F‘p. Denoting by W the ring of
Witt vectors of F,, the ring
R = W[t t]
is the universal deformation ring of the pair E, E’. Let E,E be the universal de-
formation of E,E" over R. Let fi,fs,f3 : E — E’ be a triple of isogenies. The
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13. DEFORMATIONS OF ISOGENIES OF FORMAL GROUPS 141

locus inside Spf R to which f1, fa, f3 deform is a closed formal subscheme. Let
I =minimal ideal in R such that fi, fo, f3: E— E’ lift to isogenies E —E’ (mod I).

The problem in this chapter is: Determine

a(flv ,f27 fd) = 1gw R/I

(in particular, determine when this length is finite).

This problem reduces to a problem on formal groups, as follows. Let I' = E resp.
[” = E be the formal group over R corresponding to E resp. E'. By the Serre-Tate
theorem we have

I =minimal ideal in R such that f'l, f'g, f3 E — FE' lift to isogenies I —T” (mod I).

Now E and E’ can both be identified with the formal group G of dimension 1 and
height 2 over F,, (which is unique up to isomorphism). In this way fi, f2, f3 become
non-zero elements of End(G) = Op. Here D denotes the quaternion division algebra

over Q.
On Hom(E, E’) we have the quadratic form induced by the canonical principal
polarization,

QUf)="fof=degf .
This Z-valued quadratic form is induced by the Z,-valued quadratic form
Q) =a-‘'x

under the inclusion Hom(E, E’) C End(G). Here a +— ‘z denotes the main involution
on D characterized by (reduced trace)

tr(z) =a+‘x

We also write Q(x) = Nm(z) (reduced norm).
Let L = Zpf1 + Zyp fo + Zy f3 be the Z,-submodule of Op, with the quadratic form
@ obtained by restriction. Then

I = minimal ideal in R such that L C Homgpg, (T, ).

Assume that (L, Q) is non-degenerate, i.e., L is of rank 3. Then to (L, Q) are associ-
ated integers 0 < a1 < as < ag, the Gross-Keating invariants. Recall ([B, section 2|)
that if p # 2 these invariants are characterized by the fact that in a suitable basis
e1, e, ez of L the matrix T = %((m, e;j))i; is equal to

(1.1) T = diag(u1p®, ugp®®, usp®) with uy, uz, uz € Z;.

Here (z,y) = Q(xz +y) — Q(z) — Q(y) is the bilinear form associated to the quadratic
form Q.
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142 M. RAPOPORT

Theorem 1.1. — The length of R/I is finite if and only if (L, Q) is non-degenerate.
In this case, 1gy, R/I only depends on the Gross-Keating invariants (ay,as,as) and
equals a(Q) where

a;—1 (a1+a2—2)/2
a(Q) = Z (i +1)(ay + ag +az — 3i)p" + Z (a1 +1)(2a; + as + ag — 44)p’
=0 i=a
1
@t (a3 —ag + 1)pl@F42)/2 if 4y = ay (nod 2)
ay—1 _ (a1+az2—1)/2
alQ) = Z (i 4+ 1)(a1 + as + ag — 3i)p* + Z (a1 + 1)(2ay + a2 + a3 — 4i)p’,
i=0 i=ay
if ap # az (mod 2)
Remark 1.2. — Recall from [B, Lemma 5.3] that, since (L, Q) is anisotropic, not all

ai, as, az have the same parity. Hence the RHS of the formulas above is an integer in
all cases.

Remark 1.3. — The formulas above imply that the length of R/I only depends on
the isomorphism class of the quadratic module L. This can be seen in an a priori way
as follows.

First of all, there is an action of (D*)? on the universal deformation ring R, given
by changing the identification of the special fibers of T',T” with G, G by a pair of
automorphisms of G. More precisely, an element d € D* defines a quasi-isogeny
of G, as the composition Frob™ od. Here Frob denotes the Frobenius endomorphism
and v = v(d) is the valuation of d. Since this is a quasi-isogeny of height 0, it is an
automorphism of GG. Note however, that this is only a semi-linear automorphism, and
therefore also the induced automorphism by (dy, d2) € (D*)? on R is only semi-linear.

It follows that for (dl,(lz) ( *)? with v(dy) = v(dz), the length of the deforma-
tion ring R/ for L = Z, )‘. +7Zy, fg +Zl,f; is equal to th(‘ length of the deformation ring
R/I' for L' = Z,,fl +Zy }‘2 —|—Z,,f; where f/ = (llde . Hence it suffices to show that
for any two isometric ternary lattices L and L’ in Op, there exists (dy,ds) € (D*)?
with v(dy) = v(dy) and L' = d; Ld, "

Fix a nondegenerate ternary form @ over Z,. We want to show that for any two
isometries o, 0’ from Q to Op, there exists (dy,dz) € (D*)? as above with L' =
dyLdy ", where L resp. L' denotes the image of o, resp. ¢’. By [Wd1, Lemma 1.6],
we may identify SO(D, Nm) with the group

{(d1.d2) € (D) | Nm(dy) = Nm(d)}/Q .
By [Wd2, 1.3], the group SO(D, Nm) acts sitply transitively on the set of isometries
o, hence there exists a unique (dy,ds) € SO(D,Nm) with ¢/ = djod,'. The pair
(dy,d2) has the required properties.

To start the proof of Theorem 1.1, we first recall the following proposition.
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Proposition 1.4. — Let ¢ € End(G) be an isogeny, i.e., ¢ # 0. Let J be the minimal
ideal in R = Wt t']] such that ¢ lifts to an isogeny I' — I'" (mod J). Then the closed
formal subscheme T of S = Spf R is a relative divisor over Spf W. In other words,
J is generated by an element which is neither a unit nor divisible by p.

Proof. — This is the special case of [Ww1, Prop. 5.1], where (in the notation used
there) K = Q,. A different proof that 7 is a divisor is (at least implicitly) contained
in [Z, section 2.5]. d

Let us prove the first statement of Theorem 1.1. If (L,Q) is degenerate, then
L is generated by two elements. Hence the deformation locus is by Proposition 1.4
the intersection of two divisors on a regular 3-dimensional formal scheme and there-
fore cannot be of finite length. Now assume that (L, Q) is non-degenerate. Now
Hom(E,E') ® Z, = End(G), so we find isogenies f1, f2, f3 : £ — E’ with Z,-span
equal to L. Let T = Spec W{[t, t']]/J. Then f1, f2, f3 deform to isogenies from Ep to
E’.. Hence at any point ¢ of T' we have rg Hom(E;, E;) > 2, hence the elliptic curves
E; and E, are supersingular. Since supersingular points are isolated in the moduli
scheme, it follows that 7" is an Artin scheme, as was to be shown.

From now on we assume that (L, @) is non-degenerate. Let 11,12, 13 be an optimal
basis of L. If p # 2, this means that the matrix of the bilinear form @ in terms of
this basis is diagonal as in (1.1).

Corollary 1.5. — Let T; C S be the locus, defined by the ideal I; in R, where v; lifts
to an isogeny I’ — I'"(mod I;). Then
ley R/T= (T, T3 Ts)s

Here on the RHS there appears the intersection product of divisors on a regular
scheme, defined by the Samuel multiplicity or via the Koszul complex of the equations
gi of I,

x((91:92.93)) = Z(—l)i1g(Hi(Ko(91,g2,g3)))
(comp. [F, Ex. 7.1.2]).

Proof. — By our non-degeneracy assumption, the g; form a regular sequence in a
regular local ring. O

The corollary allows us to apply the intersection calculus of divisors on a regular
scheme. In particular, the RHS is multilinear in all three entries.

Theorem 1.1 will be proved by induction on a; + as + as. It will follow from the
following three propositions.

Proposition 1.6. — Let a3 < 1. Then

. 1 a2=0
Q(Q)’{z az = 1.

Hence Theorem 1.1 holds true in this case.
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Proposition 1.7. — Let 13 = p - 4 with ¢ € End(G). Then
(T, T T3)s = (T - T2 Ty)s + (T - T2 - Sipy)s

Here T; (i = 1,2,3) resp. T denotes the deformation locus for i; resp. 15 and S,y =
S xspt w Spf F, is the special fiber of S.

Proposition 1.8. — If a1 = az(mod 2) then

a;—1 (a1+az2—2)/2
(Ti T2~ Spy)s = D 26+ 1"+ D 2@+ 1)p' + (ar + )ple+e)/?
i=0 i=a;

If a1 # az(mod 2) then

alfl ) ((L1+a2—l)/2
(T 'Tz'S(p))s = Z 2(i + 1)p* + Z 2(a; + 1)p
1=0 i=ai

These propositions indeed imply Theorem 1.1. For this recall (|B, Cor. 5.8]) that
we can (and do) choose 13 such that v(i3) = as. Here, as elsewhere, we denote
by v the valuation function on D. Now, if ag > 1, then there exists 5 € End(G)
with 5 = pis.

Lemma 1.9. — Let (¢1,2,13) be an optimal basis of the lattice L. Let 1p3 = piy
with ¥4 € L and denote by L' the lattice generated by 1,9, 1%. Then the invariants
of L' are given in terms of the invariants (a1, as,a3) of L by

(ar,a2,a3 —2)

(in some order so that they form a weakly increasing sequence).

This is obvious for p # 2 from the characterization in (1.1). For p = 2, the proof
is given in the appendix, using the classification of quadratic forms over Zs. An
alternative, more conceptual proof can be found in [B, Cor. 6.7].

Using this lemma, the above propositions give an inductive procedure for calculat-
ing (71 - 73 - T3)s. The formula in Theorem 1.1 follows from this calculation.

We now devote one section each to the proof of these three propositions. For
Propositions 1.6 and 1.7 the case p = 2 presents additional problems. In order not
to obscure the argument, the problems arising for p = 2 are relegated to the ap-
pendix to this chapter. In the chapter following this one, a variant of the proofs of
Propositions 1.6 and 1.7 is given which avoids any case-by-case considerations.

2. The induction start: Proposition 1.5

Since not all a; have the same parity, we have a; = 0. Hence ¢y is an automorphism
of G. Since I is a universal deformation of G, the ideal I in W{t,']] defining the
deformation locus of ; is of the form I} = (¢’ — h(t)), for some h € W{[t]]. For I D I,
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it follows that ; lifts to an isogeny I' — I’ (mod I) if and only if “4); o 4); lifts to an
endomorphism of I' (mod I N W{t]]). Let

w2 ="Y1oty, w3 ="¢ 0tz in End(G) .
We see that
T1 N T2 NT3 = locus in Spf W[t] where 2 and @3 lift to endomorphisms of T'.

More precisely, for ¢ = 2 or ¢ = 3, let J; be the minimal ideal in W{[t] such that ¢;
lifts to an endomorphism of I'(mod J;). Then 73 N7 N73 is isomorphic to the closed
formal subscheme of Spf W[t] defined by Jo + Js.

Now let p # 2. Then we have from the definition of an optimal basis

L

vi =—p; and Nm(p;) = wiup® , i=2,3 .
(2.1)
P23 = — P3p2 .

Let K = Qp(y/—uiuzp®). Since az < 1, we deduce from (2.1) that ¢, generates the
ring of integers Ok. Hence I'(mmod Js) is the canonical lifting of G relative to the
quadratic extension K of Q,, comp. [Ww1, Def. 3.1]. Applying the following lemma,
we obtain

p3 € 1**0p \ (OK + Ha3+10D) s
with a3 = 1. Now applying [Ww1, Thm. 1.4], or [V], Thm. 2.1], we have

atl — 1 ifay, =0

s WI/(2+ ) = {a32+ 1=2 ifag=1 0O

Remark 2.1. — The proof shows more generally Theorem 1.1 in the case where p # 2
and a; = 0: one appeals to [V], Thm. 2.1].

Lemma 2.2. — We allow p = 2. Let K be a quadratic extension of Q, contained in
D, which is unramified or tamely ramified. Let x € Op which anticommutes with K,
i.e., such that conjugation by x induces on K the non-trivial automorphism of K. Let
r =wv(x). Then

xe"Op \ (O + "1 0Op)
Here II denotes a uniformizer of Op.
Proof. — We distinguish cases.

Case K/Q, unramified. — In this case we can choose a uniformizer II of Op with
12 = p and anticommuting with K. Then

Op =0 ® 0Ok -11

where the first summand commutes with K, and the second summand anticommutes
with K. Then

Ok +T°0p = Ox @ plslog 11 .
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Now if z anticommutes with K, then r = v(x) = 2t+1lisodd and z ¢ O +1I""'Op =
Ok @pt'HOK - 11

Case K/Q, tamely ramified. — In this case we can write Og = Zp[r] with 72 = u - p,
for uw € Z;'. Then

Op=0x®0k-j , j2=’LL/EZ:\Z;’2 ,
where the first summand commutes with K and the second summand anticommutes
with K. Then
O +1I°Op = O ®7°0f - j .

If z anticommutes with K, it lies in 7O - j but not in 7" 1Ok - j, hence z ¢
Ok +H7‘+1OD=OK€B7TT+]OK-j. O

Remark 2.3. — 1In the case of wild ramification (p = 2) it can happen that x can be
corrected by an element of O to have higher valuation than r = v(z).

3. The induction step: Proposition 1.6.

It suffices to prove
(€ T)s=(C-T5)s +(C-Sp))s
for every irreducible component C of 7; N 75. Let
J=minimal ideal in W] such that “¢); o ¢ lifts to an isogeny I' —T' (mod J)
J’=minimal ideal in W[[t']] such that 12 o “¢; lifts to an isogeny IV — I (mod J').
We have an obvious inclusion

TiNT —— & = Spf (W[H)/7)w (W[F]/T)

The proof of [Ww1, Prop. 5.1] shows that J is generated by one element. Now
t4h1 01pg is not scalar. Hence the generator of J is not divisible by p, because otherwise
“4py o 1hy would extend to the universal deformation of G over F,[t]], contradicting
[Vi, Thm. 1.1]. The same argument applies to J' instead of J. Hence all irreducible
components of X have dimension 1, and each irreducible component of 73 N7 is also
an irreducible component of X. We now determine the irreducible components of X.

The endomorphisms ¢ = “1)1 0 1hy and ¢’ = 1y 0 “¢h generate quadratic extensions
K = Qp(p) resp. K’ = Q,(¢") which are conjugate inside D.

Lemma 3.1. — The order Z,|p] in K has conductor [(a + az)/2].

Proof for p # 2. — In this case the fact that the v; form an optimal basis, i.e., diag-
onalize the bilinear form as in (1.1), implies that

ay+taz

tr(p) =0 , ¢* = —ujugp
Hence Zy[¢] = Z,, + p" Ok, with r = [(a1 + a2)/2]. O
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We therefore obtain an equality of divisors on Spf W{t],

[(a1+a2)/2]
Spt W[Ll/J =Y Wile)
s=0

Here Ws() is the quasicanonical locus of level s, with respect to the embedding of K
in D defined by . Hence W;(y) is a reduced irreducible regular divisor such that the
pullback of T to W, (p) has as its endomorphism algebra the order Os = Z, + p*Ok
of conductor!) s in K. We may choose an identification

Ws(p) = Spf W,

where Wy is the ring of integers in the ray class field extension M of the completion
M of the maximal unramified extension of K with norm group O} .
Analogously we have
[(a1+a2)/2]
Spf Wt/ = > W)
s=0

We apply the following simple observation.

Lemma 3.2. — Let M be a discretely valued field. Let M C K C L be finite field
extensions such that K @y L = LM (e.g. K/M Galois). For each field embedding
7 : K — L with 7|M = id, let I'; be the graph of the corresponding morphism
Spec O, — Spec Ok . Then

Spec Ok ®o,, O = UFT

Proof. — Obviously, the RHS is a closed subscheme of the LHS with identical generic
fibers. But the LHS is flat over Oy, hence is the closure of its generic fiber. Od

Note that W, € W, whenever r < s. The lemma implies that each irreducible
component of W,.(¢) N W(p') is isomorphic to Sptf W,,, where m = max{r, s}.
Hence each irreducible component of 7; 175 is isomorphic to Spf Wy for some s with
0<s< [(CL1 +a2)/2].

Proposition 3.3. — Let F,., F be quasi-canonical liftings of G of level r, s (with respect
to the quadratic extension K of Q,) defined over the ring of integers O of a finite
extension of Frac W. Assume that 11,09 lift to isogenies F, — Fg over O. Let I
resp. I' be the minimal ideal in O such that s = ps, resp. ¥4 lifts to an isogeny
F, — Fs(mod I) resp. F, — Fs(mod I'). Then I = pI'.

(D1t is more traditional to attribute the conductor p® to this order.
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Proof. — Perhaps replacing the isogenies by their duals, we may assume 7 < s. First
assume r = s. All quasi-canonical liftings of level r are conjugate under Gal(M,./M).
By [Ww1, Remark 3.3], there exists an isomorphism of the underlying formal groups
v Fs — Fr

such that

poy=vo0¢
However, v is in general not an isomorphism of deformations of G, since v conjugates
the subfield K = Qp(¢) of D into the subfield K’ = Qp(¢’), hence v may be a
non-central element of D. Let

(3.1) u=Nm(y) € Z;
We set
w; =~vovy; € End(F,) , i=1,2,3 .
Then
pop;,=w;op , =12 . O
Lemma 3.4. We have 2r < ay and 2r < as.
Proof for p #2. — Since F, is a quasi-canonical lifting of level r, it suffices for the

first statement to show that the conductor of one of the orders Z,[p1] resp. Z,[p2] is
at most as/2. Now v(y;) = a;. But ¢; is not traceless. Set

1 ,
wl =i (e =12

Then Y is traceless and hence the conductor of Z,[¢:] = Z, (Y] is equal to [v(4))/2].
Hence it suffices to show

(3.2) v(p)) <azfori=1lori=2 .

We distinguish cases.

Case K/Q, unramified. — Then a, and ay are even and
0i=Ap/? L N €EeOR , i=1,2 .

Then tr(p;) = (A + “Xi)p®/? and

1 .
@) = 5()\11 —t\) i/

Hence v(¢)) = a; unless the residue class [A;] of A; lies in Fp,. But since the v,

i

diagonalize the bilinear form, we have

(3.3) ‘10 = =" 09

Hence not both [A1] and [A2] can lie in F,, whence the claim (3.2). Now if az = 2r,
then 2r = ay = a3. Hence a; would have to be odd, which is impossible.
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Case K/Q, ramified. — Let m € Ok be a uniformizer with ‘m = —7. Let
i =N, NeOg , i=12 .
Then
A= 3= (F) ) e
Hence v(¢?) = a; if a; is odd. Now the identity (3.3) implies
(=) X = —(=1)*2 - A" Ag .

Hence a; and ag have to have different parities which shows (3.2) in this case. Now if
az = 2r, then a; < 2r would have to be odd which contradicts 2r < v(¢}) =a;. O

Lemma 3.5. — We have 3 € 1%*Op \ (O + 11T Op).

Proof for p # 2. — Again using that the v; diagonalize the bilinear form, we have
P3p ="z
Since v(p3) = ag, an application of Lemma 2.2 gives the result. O

We now apply [V], Thm. 2.1]. Since a3 > 2r — 1, we are in the “stable range” of
that result. Hence I is the n-th power of the maximal ideal of O, where

az +1
2

pr—1

(3.4) 'rL:2~F~|O:WT|+< 7')~|O:W] .
Now v(p%) = az — 2. Since ag — 2 > 2r — 1, we are again in the stable range and the
ideal I’ is the n/-th power of the maximal ideal of O, where n’ is given by (3.4) with
as replaced by a3 — 2. Hence n —n’ = |O : W|. This proves the proposition in the
case r = s.

To prove the general case, we use the following lemma. For the proof we refer to
[Ww1, Cor. 5.3]. Note that the element 7 appearing in the statement below has the
same valuation as a uniformizer of W1, by [Ww1, Cor. 4.8].

Lemma 3.6. — Let r < s and let F,, Fs and Fsy1 be quasi-canonical liftings of level
r, s, and s+ 1, all defined over O. Let w: Fy — Fsy1 be an isogeny of degree p defined
over O and write 7 in terms of a formal parameter

T(X)=mX+mX*+... , ;€0 .

Let ¢ € End(G)\ {0} and let I(r,s) be the minimal ideal in O, such that ¢ lifts to an
isogeny F, — Fy (mod I(r,s)). Let I(r,s + 1) be the minimal ideal in O, such that
mo lifts to an isogeny F, — Fsq1 (mod I(r,s +1)). Then

I(r,s+ 1) =mI(r,s)
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|

The lemma shows that if the assertion of Proposition 3.3 holds for 11, 1q, 3, ¢4 :

F, — F, it holds for m o ¢y, mo¢pg,mo g, mo ¢y : F,. — Fyiq as well (note that

(11, %¥2,13) is an optimal basis of their Z,-span if and only if (7 o ¢, 7 0 9ha, w0 13)
is an optimal basis of their Z,-span). We note the following lemma.

Lemma 3.7. — Letr < s and let F,., Fs11 be quasi-canonical liftings of level r,s + 1
defined over O. Then all isogenies 1 : F. — Fsi1 factor through an isogeny Fs —
Fsi1 of degree p, where Fy is a quasi-canonical lifting of level s.

Proof. — This follows from the proof of Prop. 1.1 in [Ww2]. After choosing suitable
isogenies from the canonical lifting to F}. and to Fs11, we may assume that the Tate
modules of F,. and Fy 1 are of the form

Ty =(Zp - p "+ Ok)t, Tos1=(Zy p "t +0k) t.
Let Fy be defined by Ts = (Z, - p~* 4+ Ok ) - t. Then (loc. cit.),

Hom(F,,Fs11) ={ a € Ok | oT, C Ts11}
={a€Ok|aTl, CT, }
={ae€Oklal.CTs}.

Therefore all isogenies F,. — Fy factor through F,. — Fj. |

Using the previous two lemmas we now prove Proposition 3.3 by induction on the
difference s — r. Indeed, the induction step from (r,s) to (r, s + 1) is obvious, except
in the case (2 when the result ¢5 : F, — F, of dividing 15 : F, — Fy,1 by 7 is
not of the form z/~)3 = p?/zg, for a suitable 1% : F, — F,. However, in this case we
have a3 = v(13) = 2 and hence r = s = 0 and v(¢§) = 0. In this case the ideal I’
describes the locus where the quasi-canonical lifting F} is isomorphic to the canonical
lifting Fy. By [Ww1, Cor. 4.7], the ideal I’ is equal to the n-th power of the maximal
ideal of O, where n = e/e; with e the absolute ramification index of O, and e; the
absolute ramification index of Wi. By [VI, Thm. 2.1], the ideal 1(0,0) is equal to the
e-th power of the maximal ideal of @. On the other hand, the element m occurring
in Lemma 3.5 has valuation e/e; in O, cf. [Ww1, Cor. 4.8]. Hence 1(0,1) = pI’, as
required.

4. Intersection with S(,): Proposition 1.7.
For the proof of Proposition 1.8 we will make use of the Kummer congruence (KM,

13.4.6]). We first recall the statement.

(DT thank S. Wewers for pointing out this possibility, which I had overlooked.
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We denote by M the moduli stack of elliptic curves over Spec F,. For integers a,b
with @ > 0, b > 0 and a + b = n, we form the fiber product stack M, ,

MxM — MxM

|

Ta
Moy — M

Here A denotes the diagonal morphism and the upper horizontal morphism sends
(E,E) to (E(pu),E’(pb)). Here we denoted by E®") the pullback of E under the
a*™® power of the Frobenius morphism. Then M, classifies pairs (F, E’) with an
isomorphism « : E®*) 5 B,

We consider the moduli stack M,y over Spec I, classifying isogenies £ — E' of
degree p" (in [Go2], this stack is denoted by T, ). We obtain a morphism

Cap : Map — Mpn)
It sends (E, E’, «) to the composition isogeny
g gt >, gt [E
(o3
Letting a, b vary we obtain a morphism

(Y22 H Ma,b E— M(pn)
a+b=n
a>0,b>0
Theorem 4.1 ((KM, 13.4.6]). — The morphism ¢ is an isomorphism outside the su-
persingular locus. The inverse image of a supersingular geometric point x € M(F,)
n M(pn)(]Fp) consists of precisely one point & and the completed local ring of & is
isomorphic to
= a b
FlxY] /I &7 —v7)

a+b=n
a>0,b>0

in such a way that M,y is defined by the equation XP" — Y7 =o. O

Recall the ideal I; in W[t] defining the divisors 7;, for ¢ = 1,2. By the Kummer
congruence there exist for i = 1 and 2 uniformizers t; of F,[t]] and ¢, of F,[#'] and
generators g; of I; such that

a; —1

g9i = (L = (E)P) - (8] = (¢
Hence 7; N S(;,) is the union of irreducible components V;, (1 = 0,1,...,a;), where
Viy is the divisor in S(,) = Spf F,[[t,t']] defined by tf“ — (#)P""™". Hence

Yoo (tfdl —t£) (mod p)

ap a2

(41) (7—1 T S(p))S = Z Z(Vlu : V2u)8

p=0r=0
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We write

to=u-t; , u€F[t]~
f=u | o €R ]

Lemma4.2. — Let a; = az(mod 2). Then u(0),v'(0) € Fe and u(0) # u/(0)P"*.

Lemma 4.3. — We have
(Vl/.b . VQI/) = pn P

with n = min{a; — p +v,a2 — v + p}.

It is an elementary matter to use Lemma 4.3 to calculate the sum on the RHS
of (4.1). The result is Proposition 1.8.

Proof of Lemma 4.3 (assuming Lemma 4.2). We must show

(4.2) Ig By, 1/ — (7" " (ut)” — (')

ag—v n

)=p
By symmetry it suffices to consider the following two cases.

Case 1: p<a; —p,v<az—v

Case 2: p<ay —p, aa —v <v.

In case 1 the LHS of (4.2) is equal to

ay~2pu . ag—2u

P (ut — (u't')?

—

-

lg Fpflt,¢']/(t — P

P g B[]/ (u -t

ay] —2pu ag—2v

. (Ult/)p )(i) pu+u+min{a142u,a2-2u} — pn’

Here in (1) we used the formula ([Go2, Lemma 4.2])

lgs B/xy... 20 :Z lga B/z;

valid for any A-algebra B and non zero divisors z1,...,2, in B. In (2) we used
Lemma 4.2 which implies that if a; — 2 = as — 2w, then u(0) # v/ (0)P"* "~ = u/(0)P".

In case 2, the LHS of (4.2) is equal to
lg Fpllt. ¢]/((t =t )=

prp™ g Byt ] /(t — ¢ )=

— v—as a)] —2u+2v—a 3
pa2_’/+# g Fp[[t/”/(u/t/ _ up2 2 4P 1—2u+2 2) (:)pa2—'/+ﬂ _ [)n~

al—2pu . 2v—ag

W (u't — (ut)P

ay—2u

ag—v
)P

" p2v a2
Ju'th — (ut)

Here in (3) we used Lemma 4.2: if a; — 2u + 2v — az = 0, then a; = 24 and ay = 2v
are both even and u/(0) # u(0)?"** = u(0). a
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Proof of Lemma 4.2. — Let £ = (a2 — a1)/2. Let
I, =minimal ideal in W{[t, '] such that p‘s; lifts to an isogeny I' —T"’(mod I7).

By the Kummer congruence we can choose uniformizers ¢; of F,[[t] and t; of F,[t']
and a generator gf of I{ with

gi= (=) (=)@ =) (mod p)
Now ¥ = a o (p‘y1), where a € Aut(G). By the universal property of I' there
exists a unique W-algebra homomorphism h : W{t]] — W] such that « lifts to an
isomorphism
a:T — he(T)
Hence I is generated by g} with
(4.3) gb = (h(ty) — 7Y - (h(ty)? — 77 ) - ()™ = t))(mod p)
The two elements g and go differ by a unit and
(4.4) g2 = (uty — (W)P) - ((u-t1)? — (@E)P ) ((uty)P™ — /t))(mod p)

The first factor on the RHS of (4.4) is irreducible and can only divide the first factor
of the RHS of (4.3). Hence the first factors differ by a unit. Let

(4.5) h(ty) =v -t (mod p) with v e F,[t]* ,
and put ¢ = v(0). Comparing coefficients we obtain
¢ = u(0)/u(0)P"*

The remaining factors on the RHS of (4.4) are not irreducible: (ut;)?" — (u't})P
is the p”-th power of an irreducible element, where v = min{u, az — u}. An analogous

ag—p

comparison of coefficients gives

ag—2u

¢ =u(0)/u'(0)P , p=0,... a2

It follows that u'(0) € F,2 and by symmetry u(0) € F,2. It remains to show ¢ # 1.
Now c¢ is the induced action of o on the tangent space of the universal deformation of
G over F,. And « is given in terms of the formal group law by

aX)=a1 X + e X?+... , a;€F, .

Then a; € Fj2 = Op/IOp is the residue class of a. By the lemma below, the action
of a on the tangent space of the universal deformation space is by multiplication by
ay/a;. Hence ¢ = ay/@;. But a1 ¢ F), and hence ¢ # 1. Indeed, otherwise for any
a € Zy, with residue class a1 modulo p, we would have

(4.6) v(ta — aplapy) > v(1h)

But the optimal basis 11, 12, %3 may be chosen so that 1, has mazimal valuation in
its residue class modulo Zy,1y,. Indeed, if p # 2, any optimal basis has this property
(otherwise an easy application of Hensel's lemma would imply that L is isotropic).
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If p = 2, we take the optimal basis constructed in table 1 of the appendix. By
assumption a; = az(mod 2). Going through all cases in table 1, we see that this can
only happen in cases A2 and B3 a). In the case A2, we have v(¢)1) > v(t2) which
contradicts (4.6). In the case B3 a), we get

(2 — ap'ehr,iho — ap“eh1) = 2% (uy +uz + 4 (a® — a) uy),

which has valuation as = v(¢2) = f2 + 2, since in this case u; + ug = 4(mod 8). O

Remark 4.4. — In fact, even for p = 2, it is true that any optimal basis has the
property that ), has maximal valuation in its residue class modulo Zpy;. This
follows from [B, Prop. 6.9].

Lemma4.5. — Let o € OF = Aut(G), with action on Lie G given by (multiplica-
tion by) o € Fp2. The induced action of a on the tangent space of the universal
deformation space of G over F, is by multiplication by a1 /a;.

Here we denote by x +— Z the non-trivial automorphism of F..

Proof (comp. |Z, Lemma 78]). — The tangent space can be canonically identified
with

Hom(Lie ‘G, Lie G)
For ¢ € Hom(Lie !G, Lie G) we have

a(p) =a1opolar’

Identifying *G with G replaces ‘o by the residue class of ‘a, i.e., by a;. O

A. Appendix: The case p =2

In sections 2 and 3 we made the assumption p > 2. In this appendix we treat the
case p = 2. In this case one has to take into account the delicate theory of quadratic
forms over Zys. We will proceed according to the following table. The table gives

— the normal form of the quadratic space (L,Q) in terms of a suitable basis

e1, €2, e3 (we give the matrix T = ($(e;,€5))),

— an optimal basis 1, 12, 93,

— the Gross-Keating invariants (a1, az, az) of (L, Q).

We go through all cases of anisotropic ternary lattices, according to the table in [Y1,
appendix B], comp. also [B, Thm. 5.7].
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Table 1

A) T = diag (u12%,2°(21)), @ >0,8> -1, o = f mod 2
(the condition o = 8 mod 2 is due to the anisotropy of 7', comp. [B, section 5]).
1) a < B+ 1. Then ¢ = e1,1P2 = e2,93 = e3 and

GK(T)=(a,+1,6+1)
2) a> B+ 1. Then ¢ = ea, 12 = e3,1%3 = e and
GK(T)=(+1,8+1,q)

B) T = diag(u;2°, up2%2, u32%) with 0 < 8; < B2 < 33
This matrix is anisotropic if and only if

(—1,ugu3) = (uyug, urug) - (2,u1u2)51+ﬁ3 . (2,u1u3)ﬁ‘+ﬁ2 ,

cf. [Y2], or [B, section 5].
1) B2 # (1 mod 2. Then ¢; = eq, 2 = 2,93 = c1e1 + coe2 + e3 for suitable
c1,Co € Zso, and

GK(T) = (B, P2, 43+ 2)

2) By = 1 mod 2 and f3 < (2 + 1.
a) B3 = 2. Then ¢ = e1,¢p = 275 ey +e2,P3 = 2777 ey +ey
and

GK(T) = (b1, 2+ 1,83+ 1)
b) B3 = Bo+1 and u; = us mod 4. Then 1, = e1, s = 272" ey +ea,

Bo—0B1
3 =2 2  -e1+es+ ez and

GK(T)= (1,62 + 1,083+ 1)

¢) B3 = f2+1and u; = —us mod 4. Then v = ey, thy = 27524 -1 +
Bo—pB1

ea+es, 3 =272  -e; +es+ 2e3 and
3) B2 = (1 mod 2 and (3 > B2 + 2.
B2—B1

a) up = —ug mod 4. Then 1 = ey, Yo =272  -e1+e9, 13 =e3 and

GK(T) = ($1, 02 +2,03)

Ba—pB1

b) w1 =uz mod4. Then ) = ey, s =272  -e1+ea, P3c1e1+caeates
for suitable ¢y, ¢y € Zso, and

GK(T)= (61,52 +1,03+1) .
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A.1. The induction start. — Let az <1, i.e., a1 = 0 and a3 = 1. We follow the
proof of Proposition 1.6 in each of the following cases.
. T = diag <u12,2*1 (f ;) ), hence GK(T) = (0,0,1) .

Then pg = “4)1 0Py = “es 0 e3 and
tr(p2) = (e2,e3) =1 and Nm(pz) =1 .
Hence K = Qa(p2) = Q2[X]/(X? — X + 1) is an unramified extension of Q, and
Ok = Zsz|p2). Therefore I'(mod J3) is a canonical lifting relative to K.
Now @3 = “41 o 1p3 = ‘ez 0 e1 and
tr(eps) =0 and Nm(pz) =up -2 .
Furthermore
tr(pz o ‘ps) =tr(*esoegotesoe;) = Q(ez) - tr(‘esoer) = (e1,e3) =0 .

Hence —p2 0 3 + 3 0 'y = 0, i.e., @3 anticommutes with K. Since K/Qq is
unramified, an application of Lemma 2.2 gives

w3 € IOp \ (O + HQOD) .

Hence, applying [Ww1, Thm. 1.4],

lg W/ + ) = 5+ =1 = 220

which proves the claim in this case.
2 1
° T = diag (ul, <1

2) > , hence GK =(0,1,1) .
Then @9 = “1h; 0y = ‘e1 0 eg and
tr(p2) = (e1,e2) =0 and Nm(p2) =uq -2 .

Hence K = Qa(p2) = Q2[X]/(X? + u12) is a ramified extension of Q, and Ok =
Zs[p2]. Therefore I'(mod J3) is a canonical lifting relative to K.
Now 3 = “4h1 013 = ‘€1 0 e3 and

tr(ps) =0 and Nm(ps) =u; -2 .
Furthermore
tr(pg o “p3) =tr(*esoego‘eroes) =uy - (ea,e3) =uy -2 .
Hence
(A.1.1) 203+ P30py =—up-2 .

We use the presentation of D resp. Op from [G, Prop. 4.3]. Namely, assume that
the different D of K/Q has valuation equal to e. Then

(A.1.2) D=K®&K-j ,
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where j anticommutes with K and where j2 € Z5 satisfies v(j% — 1) = 2(e — 1). Let
7 be a uniformizer in K. Then a := 77%(1 + j) € OF and

(A.1.3) Op=0g®0r -a .
In the case at hand the extension K/Qj is wildly ramified, with different D of valuation
e = 3. Hence v(j? — 1) = 4. As uniformizer 7 we take @s.
Write 3 = a + ba. Then
Y2 0 3 + P30y = (am + bra) + (am + bar)
= (am + bt +br1j) + (am + bt — b 1))
=2 (am+brt) .
Comparing with (A.1.1) we get
ar + bt = —uy
Hence v(b) = 1, i.e., p3 € [IOp \ (Ox + 120Op). Applying [Ww1l, Thm. 1.4], we
obtain
lge W[t] /(Ja+J3)=1+1=2=ag+as ,
which proves the claim in this case.
o T = diag(u1, uz,u3) , hence GK(T) = (0,1,1) .
Then @y = “4py 01hy =‘e1 0 (e1 + €2) = ‘eg 0 ey + ug - 1, hence
tr(p2) =ui -2, Nm(pz) =u-(uz +u1) .

Hence K = Qa(p2) = Q2[X]/(X? —2u; X + uy - (uz +u1)). Since T is anisotropic we
have ug + w1 = 2 mod 4. Hence we are dealing with an Eisenstein polynomial and
Ok = La[pa).

Now @3 = “1 013 = “ejo(e;+e3) = “e;joes+wug-1. At this point it is advantageous
to consider instead of 3 the endomorphism ¢4 = ‘e oes. It is obvious that the locus
where @9 and 3 deform is the same as the locus where 2 and ¢} deform. Now

tr(¢s) = (e1,e3) =0 and Nm(p}) = ujuz .

Furthermore
tr(“pa 0 @h) = tr(“(e1 + e2) o ey 0 ‘eg o e3)
=uy - ((e1,e3) + (e2,€3))
=0 .
Hence

“propy—phopr =0 .
Hence ¢4 anticommutes with K. Writing, as in the previous case, D = K ® K - j we
have

Op =0k @0k -a
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Here o = 77 1(1 + j) € Op. Indeed, T = 3 is a uniformizer for K and the different
D has valuation e = 2. Writing ¢4 = a + ba we get

a+ba=(a+br )y +brtj

Hence a + br~! = 0. Since ¢4 € OF it follows that the valuation of b is equal to 1,
hence

s € IOp \ (O +1120p) .

Applying now [Ww1l, Thm. 1.4], we get
lg W[t]/(Jo+ J3)=1+1=as +asz ,

which proves the claim in this case. The induction start is now complete.

A.2. The induction step: Lemma 3.1. — In this section we prove Lemma 3.1.
We go through all cases of the table.

Case A1: Here tr(p) = 0 and Nm(yp) = u - 20H°+L,
Since a + 3+ 1 is odd, we get K = Qq(v/—u12) and Ok = Zs[v/—u12] and, since

a+p3 a+p3

@ =272 -m where 7 = v/—u;2 is a uniformizer, Zs[p]Z> + 2 =z - Og. Hence the

atB [a+(ﬁ+l)] _ [a1+a2]
2 2 2 :

conductor of Zs[p] is equal to

Case A2: Here tr(p) = 201! and Nm(p) = 22(+1),

Hence K = Q1[X]/(X? — X + 1) is an unramified extension and Ox = Z[¢],
where € is the residue class of X. Then ¢ = 291 . ¢ and Zy[p] = Zo + 2°F! - Ok has
conductor §+ 1 = [(ﬁﬂ);(ﬁﬂ)} [“’13“2].

Case B1: Here tr(p) = 0 and Nm(yp) = ujugy - 201452,
Since 31 + (2 is odd, we have K = Qq(v/—ujus2) and Ok = Za[v/—ujuz2]. Now

Zolp) = Zy + 2775 - Ok has conductor Dkdazl = [ﬁ‘;ﬁ‘z] = [ufez],

B1+B82

Case B2 a): Here tr(p) = u; -27 2 1 and Nm(p)u; - 290752 (ug + ug).
Now by the anisotropy condition on 7" we have u; + us = 2 mod 4, hence K =
Q2[X]/(X?% = 2u1 X +uy(u1 +u2)) is defined by an Eisenstein polynomial and O =

B 3.
Zso|7], where 7 denotes the residue class of X. Then ¢2 S and Zo o] = Zy +
ofitha Bi+Bs _ [ﬁl+(ﬁz+l)} SEEEY

2 2 z I

- Ok has conductor

Case B2 b): This is identical with the previous case.
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B2

Case B2 c): Here tr(p) = uy 97524 and Nm(p)u? - 200582 4y uy - 200752 4y -
201485441 2014682 (23 + ug + uq).

Hence K = Qa[X]/(X? — 2u1 X + uq - (2u3 + u2 + u1)), which is defined by an
Eisenstein equation since u; + ug = 0 mod 4. Hence Ox = Zy[r], where 7 is the
residue class of X and ¢ = 2757 1 and Zolp] = Zy + 275
51-5,32 [51+§2+1:I _ [01‘502].

- Ok has conductor

B1+82

Case B3 a): Here tr(p) =272 1. u; and Nm o = 20782 g (ug + ug).

Hence K = Qa[X]/(X? — 2un X + uy - (u1 + u2)). Now since 7T is anisotropic, it
follows that u; + us = 4 mod 8. Hence writing u; + us = 4n with n € Z5, we have
K = Q2[X1]/(X? —u1 X1 +u1n). Hence K/Qy is unramified and O = Z[€], where &

B1+82 Bi1+82

denotes the residue class of X;. Now ¢ =272 t1.¢and Zy[p] = Zy+2 2 1Ok
ﬂl‘zfﬁ‘z + 1ﬁ1+(§2+2) _ [al—ga,z].

has conductor

Case B3 b): Here the trace and norm are as in the previous case, but this time
K = Qa[X]/(X? = 2u1 X + uy - (w3 + u2)) is defined by an Eisenstein polynomial.

. . 8
Hence Ok = Zz[w] where 7 is the residue class of X and ¢ = 2 =% and Zy [¢] =
3 3
Zy + 275 . Ok has conductor Buth Bit(Batl) _ [matag)
This proves the assertion in all cases. O

By symmetry we also obtain that ¢’ = 19 0“4y generates an order of conductor
[“Fe2] in K'.

A.3. The induction step: Lemmas 3.4 and 3.5. — We first prove Lemma 3.4.
We go through all cases, making use of the results in section A.2. Again we wish to
bound the conductors of the orders Zs[p1] resp. Za[ps].

Case Al: Here K = Q2(v/—u12) and Ok = Zo[r] with # = \/=u12. Then ‘7 = —7
and thereby this case is like the ramified case for p # 2. We have

OK:ZQ@ZQW 3

the decomposition into traceful and traceless elements. In particular, tr(Og) C 2-Zs.
Let

ﬁ=w—%mwmi:L2.
Then Zs[p;] = Zs[pg] has conductor $(v(pf) — 1). Let
o =N . N\ €Ok
Then
ﬁzg&—@wwwyﬂmi:Lz.
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Writing A; = a + br we have a € Z; and
i+ =2a
Ai — N =2bm .
Hence v(¢y) = a; if a; is odd and v(¢§) > a; if a; is even. Now according to our

table, a1 and as have different parity which implies that r» < (as — 1)/2. This shows
the result in this case.

Case A2: Here K = Q2[X]/(X? — X + 1) and Ok Zsy[£], where € is the residue class
of X. In this case, Z[p;] = O or tr(yp;) € 2Z2. In the first case r = 0 and the claim
is obvious. Now let tr(y;) € 2Z, for i = 1 and ¢ = 2, and consider
P; =i — %tr(s@i) :
Then writing ¢ = a + b we have 0 = tr(¢)) = 2a +b. Hence ¢f = a- (1 — 2§)
and v(¢7) = v(a) = v(b) — 2. The conductor of Zs[p;] = Za[¢}] is equal to Lv(b) =
10(p9) + 1. Now
©w; = )‘i '2‘1’/2 s )\1 S O;é

1
@7 = 50— )22

Hence v(¢f) = a;—2 if the residue class [A;] of A; lies in Fy \Fo, and is larger otherwise.
Hence if [A\;] € Fy \ F2, then r < %, hence 2r < as.
But not both [A1], [A2] can lie in Fy. Indeed,

©10P2 ="M Ay - glaitaz)/2 _ vty A, . 9B+1

On the other hand ‘@) o w2 = u - ¢, where u € Z5 is as in (3.1), and where ¢ is as
in the previous section. Now ¢ = 28+1¢. Taking the residues modulo 27!, we prove
the claim.

Now assume 2r = as = a3. Then a; < 2r has to be odd, which contradicts the fact
that a1 = as = 6+ 1.

Case B1: Here K = Qa(v/—uju22) and Ok = Zs[n], with m = \/—ujuz2. This case
is completely analogous to case Al.

Case B2 a): Here K = Qo[X]/(X? —2u; X +uy - (uy + uz)) and Ok = Zs[r] where
7 denotes the residue class of X. Then 7 is a uniformizer satisfying an Eisenstein
equation. Hence tr(Ok) C 2Z;. We again consider ¢ = ¢; — 5 tr(¢;). Then writing
¢ = a+ br we have 0 = tr(¢f) = 2a + 2bu; = 2(a + buy). Hence ¢f =b- (—u; + )

and () = v(b). The conductor of Za[p;] = Za[F] is equal to $v(b) = 2v(¢f). Now

(pi:)\,;'ﬂ'az s /\iGO;;-

Let us write

2up—m=n-7 , neOk
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Then n =1+ -7 with g1 € OF. We have
tr(pi) = Ai - 7% 4+ "Ai - ()™
= (it ) 7
Hence
o2 =5 (i = Aag™)
Let A; =1+ [\] -7 (mod 72). Then ‘\; = 1 — [\i]7 (mod 72). If a; is odd, we get
N — An® = (14 [Ni]m) — (1= [M]m) - (1 + ) (mod 72)

m -7 (mod 7).

Hence in this case v(¢f) = a; — 1. We get 7 < 3(a; — 1). Since a; or ag are odd, we
obtain the assertion.

Cases B2 b) and c): These cases are identical to the previous one.

Case B3 a): In this case K = Q2[X]/(X? — w1 X + u1n), for some n € Z;. Hence
K/Qy is unramified and O = Z3[¢], where & is the residue class of X. This case
is similar and almost identical to case A2). If tr(p;) & 2Zo, then Zs|p;] = Ok and
r = 0 and the claim is obvious. If tr(p;) € 2Zs for i = 1 and ¢ = 2, we consider
again ¢} = ¢p; — 2 tr(p;). Writing 9 = a + b¢ we get 0 = tr(¢f) = 2a + buy. Hence
2 =a(l - 2u; '¢) and v(¢?) = v(a) = v(b) — 2. The conductor of Zs[p;] = Za[?] is
equal to 2v(b) = v(¢?) + 1. Now

i =N 2972\ € OF
1
©; = 5(&—%)-2“"/2 -

Hence v(gf) = a; —2 if the residue class [A;] of A; lies in F4\Fa, and is larger otherwise.
If [\;] € Fy4\ Fo, then r < a;/2, hence 2r < az. But not both [A\{], [\2] can lie in Fs.
Indeed,

L<p1 0 py = L/\l)\2 '2((1,1—{-(1,2)/2 _ L}\l)\Q '221;_”2-1-1 =u- s :u‘2“_lf_;ﬂz+l 5 )

3 3
Taking the residue modulo P *1 we get the claim.

Now assume 2r = as = a3z. Then a; < 2r has to be odd which contradicts the
condition that a; = 3; has to have the same parity as 0o + 2 = ag = 2r.

Case B3 b): This is again identical to cases B2 a)—c).
The Lemma 3.4 is proved. O

We now turn to the proof of Lemma 3.5. Again we inspect the various cases.

Case A1: We write D = K @ K - j as in (A.1.2) in section A.1, where j anticommutes
with K and where j2 € Z5 satisfies v(j? — 1) = 2(e — 1), where the different D has
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valuation e. Then Op = Ox ® Ok - dar, where o = 7=~ - (1 + j) € OF, cf. (A.1.3).
In the case at hand e = 3, hence @ = 7~ 2(1 + j). Now

(A.3.1) Qotpstpsop2tt ey
where €1 = v o e;. This follows from ¢ = “4)1 0 99 and the definitions 1ieq, Yo = ea,
13 = e3. Now writing ‘3 = a + ba for suitable a,b € Ok and writing ¢ = 2% - 7 with

§=L(a+ ), we get from (A.3.1)
2° - m(a + ba) + (a + ba) - 20720 ey
i.e., 20T (am + br~ 1) = 28F1 . &, hence
B—a

(A.3.2) b=2"7 .‘é1 — an’

Now v(“€1) = «, hence the first summand of the RHS of (A.3.2) has valuation 8+ 1.
Since v(p3) = B+ 1, it follows v(b) = 5+ 1 = ag, which proves the claim in this case.

Case A2: Here we write Op = O ® Ok -1II where I1? = 2 and where II anticommutes
with K. In this case we have
2[3+1 Sl

polpz+p3op €1

Writing ‘@3 = a + bIl and p2°+! . ¢ we obtain
29T (208 + b(E+1¢) - TT) = 2P vey
i.€.,
2a€ + bl = ‘¢,
Now v(“€1) = v(‘¢3) = «. This implies v(bII) = «, hence @3 € MI**Op \ (Ok +
1% +10p), since az = a.
Case B1: This case is similar to case Al, except that the identity (A.3.1) is replaced
by
polpz+ pzop2-‘ézop .
Now ¢ = 207 with § = (8 + 32)/2. Writing as in case Al) ‘@3 = a + ba, where
a=7m"2(1+7), we get
2Pt (am 4+ b ) =20 gy
1.€.,
b ="‘ésn? — an?
Now the first summand of the RHS has valuation 33 + 2 and v(¢3) = 33 + 2. Hence
v(b) = B3 + 2, which proves the claim, since 33 + 2 = as.
Case B2 a): In this case the valuation of the different is equal to 2 and hence a =
7t (1+j). Now
po'ps—"p30p2-esezey
Writing ‘@3 = a + ba and ¢ = 207 with § = (81 + (2)/2, we get
(A.3.3) 20(((ma +b) + bj) — ((ma +b) +br~ ' -“7j)) = 2 - “eqes’éy
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Therefore, since ‘7 = 2uy — 7,
2005 h (1 —uym ) =2 tegestéy

Comparing valuations we obtain v(b) = B3 + 1 = as, which proves the assertion in
this case.

Case B2 b): Here again o = 7~ 1(1 + j), and the same equation (A.3.3) holds. The
case is identical with the previous case.

Case B2 c): The same again.
Case B3 a): This case is similar to case A2. We write Op = Ok @ Ok -1I as in that
case. Now
polpz—"pzop=—2-"ezes'é
We write ‘@3 = a+bIl and ¢ = 2-¢ where § = W—H and ¢ satisfies €2 —u E+uin =
0 for some n € Z5 . Then
2° - ((a& + bETD) — (a€ + b *€I0)) — 2 "eseq’éy
Now & — “€ = 2€ — u., hence
20 b T (26 —up) = —2 - ‘ezen’éy

Comparing valuations we get v(b) = 3 — 1 = az — 1. Hence @3 € I1*0p \ (O +
e+t Op), as claimed.

Case B3 b): This case is similar to cases B2 a)—c). Again the valuation of the different
is equal to 2 and o = 7~1(1 + j). Now

polys — w302 ‘tegeste
Writing ‘@3 = a + ba and ¢2° - 7 with § = (8, + 32)/2 as in case B2 a), we get just
as in that case
25+1 _] . b(]. — ’LL171'_1) = 2"6263%51

Comparing valuations we get v(b) = 3 + 1 = as, which proves the assertion in this
case. O

A.4. Lemma 1.9. — The proof of Lemma 1.9 for p # 2 was very easy. By contrast,
the case p = 2 is quite elaborate and uses more information than used so far on the
construction of an optimal basis. We go through all cases of the table 1. It turns out
that in the passage from the type T of L to the type T” of L’ a number of things can
happen, as can be read off from the following table.
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Table 2
Type T Type T’
Al a+#8 B1
a=[ B2 b)
A2 A2
Bl B2 <f(33—-2 B1
/32:[7)3—1 B2 b) OI‘C)
ﬁg = [33 Al or B2 &)
B2 ‘(1) 01 < Ba B3 b)
b = By B2 b) or c)
B2b) (1< (s B3 a)
B =2 A2
B2 C) ﬁl < ﬂQ B3 a)
01 = Ps A2
B3 a) B3> 0+ 4 B3 a)
Bs<f2+4 | B2c)
B3b) f3>p2+4 | B3b)
Bs=pP2+3 | B2b)
B3 = Pa +2 B2 a)

The calculations exhibit in fact not only the type of T” but also the precise normal
form of T' from which one can then read off the Gross-Keating invariants of 7”. In
all cases, the assertion of Lemma 1.9 is confirmed.
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Since these calculations in the 16 cases are quite tedious, we will sometimes be
brief.

Case A1: Here GK = (a, 3+ 1,8+ 1), and (¥1,%2,¢3) = (e1, €2, e3). Hence ¢1es,

SO
4 1
T/:d.' ( a ofB—1 )
iag (u12%, 2 11
Since
g1 (4 1 . B-1 g of—1
2 L1 ~ diag(3-2777,3-2777)
we obtain

7 diag(u; -2%,3-2071.3.2071) ifa#4
diag(3-2%71,3-2071 uy -2%) ifa=p.

Hence if a # 3, and since a = 3 mod 2, then T” is of type B1 and GK(T") = (o, 3 —
1,8+1) as asserted. If « = 3, then T" is of type B2b) and GK(T’) = (a—1,a, a+1),
as asserted.

The case A2 is entirely similar.

Case B1: In this case GK(T) = (51, 02,05 + 2) and (¢1,%2,93) = (e1, ez, c1e1 +
caez + e3) for suitable ¢, co € Zy. If B2 < B3, then by [Y1, proof of Lemma B.6],
both coefficients ¢; and ¢ are divisible by 2. Hence L’ is generated by (e1, ez, %63).
Hence the matrix of L’ in terms of this basis is

T/ = diag(uﬂﬁ‘ s UQ2ﬁ2, U32ﬁ372) .

So if B < B3 — 2, the type of T" is Bl and GK(T") = (51, 02,03) as asserted. If
B2 = B3 — 1, then T” is of type B2 b) or ¢) and GK(T") = (1, (2, 03) as asserted.

If B = B3, then by [Y1, proof of Lemma B.6], we have 2 | ¢;. On the other hand,
we have 2 f ¢o in this case, because otherwise the valuation of %(1/)3, 13) would be
(B2 < a3z = [3 + 2 which is impossible. Hence L’ is generated by e1,es, %(62 + e3).
Consider the matrix defined by the basis es, %(62 + e3) of the lattice L' of rank 2
generated by ez and 3 (e + €3),

7 U22ﬁ2 CQU22’82_1
x (cBuy +us)2P2 2
We determine when 7" is diagonalizable by determining the valuations of the ideals
in ZQ,
- 1 - - - -
s(L') = §(L’,L’), resp. n(L") = (Q(x), z € L') .
Now

ord s(L) =min{Ba, B — 1, ord(ciug +uz) + 2 —2} =B —1 .
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And
ord n(L) = min{ gz, 32, OI‘d(C%Ug +ug) + P2 — 2}

B Bo — 1 if us = uz mod 4
B2 if uo = —u3 mod 4.

Hence, by [Y1, Prop. B.3],

diag(n; 27271 m2272= 1) if uy = uz mod 4

T~ Q. 2 1 ,
202-1. if up = —us3 mod 4.
1 2
Here ny,m2 € Z*. For the total matrix 77 we get that if us = wug mod 4, then

T" ~ diag(u;2°, 7127271 1927271 is of type B2 a) and GK(T') = (B4, s, /2) as
asserted. If us = —ug mod 4, then T” ~ diag (u12ﬂ1,2ﬁ2‘1(§ %)) is of type Al and
GK(T") = (01, 2, B2) as asserted.

Case B2 a): In this case GK(T) = (81, f2+1, B2+1) and (¢, 92, 13) = (e1,27e1 +
e2,27%e1 + e3), where v = 3(02 — f1).

If v > 0, then L’ is generated by the clements eq, es, %63 and it follows that 7" =
diag(u12°", u32%272 152%2). Now by the anisotropy condition we have

(=1, uoug) = (uusg, urus)

hence u; = uz mod 4. Therefore T” is of type B3 b) and GK(T") = (51, 82— 1, Ba+1),
as asserted.

If vy =0, t.e., f1 = B2 = B3 =: (3, then L’ is generated by e1, ea, %(61 + e3) and has
matrix with respect to this basis equal to

w2? 0 ug2P =1
T = * us28 0
* * (uy + ug)2P~2
Now u; = wug mod 4, hence by an argument similar to the one used in the case

Bl when (3 = (3, the lattice generated by 61,%(61 + e3) is diagonalizable to
diag(n2°71,722°71). Hence T ~ diag(m 2771, 122071, up28) is of type B2 b) or c)
and GK(T') = (8 —1,3,8+ 1), as asserted.

Case B2 b): In this case GK(T) = (81,82 + 1,82 + 2) and (¢1,12,93) = (e1,27e1 +
€2,2%e1 + €9 + e3), with v = %(ﬁg - B1).

If v > 0, then L' is generated by ey, e, %((32 + e3), and has matrix with respect to
this basis equal to

u1251 0 0
T = x up2P? up22 1
s * (ug + 2u3)2%2 2
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By an argument similar to the one used in the case B1 when B2 = f33, we see that
T' ~ diag(u;2°,1n,2%272 992%2+1) hence T’ is of type B3. We claim that T’ is of
type B3 a), so that GK(T') = (81,832,062 + 1), as asserted. But ny = —us = —uy
mod 4, whence the assertion.

There still remains the case when v = 0, i.e, fy = B2 =: f and 83 = 3 + L.
Then L' is generated by ey, eq, %(el + e+ e3). Let L’ be the sublattice generated by
fo= %(6’1 + e + 63) and f3 = %((’2 —e1+ 63). Then

%(fzyfz) = %(f?nffj) = w2077 4 up2P 2 4 ug2f !
= (uy + uz + 2u3)2° 2
=n- 28,
Now 7 € Z*. Indeed, by the anisotropy condition we have
(=1, uru3)(2, urus) .

It follows that if uq3 = +us mod 8, then u; = u3 mod 4 and if u; = +3us mod 8, then
u; = —ugz mod 4. In either case u; + us + 2uz Z 0 mod 8. Similarly,

1
§(f27f3) = —u1 2772 40277 2% = (up — uy + 2u3)2° 2
=r-2°71 | with k € Z

Now an argument similar to the one used previously shows that the quadratic space
L’ is equivalent to 2°71(21). The orthogonal complement of L' in L ®z, Q, is the
line

~ U‘
(L) =Qy - (—2u—%2 tes) .
2

Now L’ is generated by e; + e and f2 and f3. Hence one easily calculates that
(LNl =Zy-f

where f = —25‘—262 + e3. Now

3= (2

2
u2> 2H+2+'Ll/32ﬁ+l :/\-QB+1 R /\EZE<

Hence Zy - f + L' has valuation (3 + 1) + 2(f — 1), equal to the valuation of L.
Hence L' = Zof + L' is equivalent to diag (A - 2771,2071(2 1)), is of type A2 and
GK(T") = (8,8,8 + 1), as asserted.

Case B2 ¢): Here GK(T) = (1,02 + 1,02 + 2) and (1, 92,13) = (€1,27e1 + €3 +
es,27e1 + e + 2e3), where v = 1(82 — B1).

When v > 0, this is similar to previous cases with L’ generated by e, %62, e3. In this
case T = diag(u12°", up27272 4327241 is of type B3 a) and GK(T") (51, B2, B2 + 1),
as asserted.
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When v =0, i.e.,0y = 02 =: S and B3 = §+ 1, then L’ is generated by ey, %(61 +
e2), e3. Now the quadratic space generated by e; and %(el + e2) has matrix

T’ - ’U,12’B U,12B—1
- * (uy + u2)2'8_2

Now (uy + u2)2°72 = 5- 27 with n € Z,. By the usual argument 7" ~ 2771 (2 1) and
hence T ~ diag (u32°t!,2°71(21)) is of type A2 with GK(T") = (8,8,3 + 1), as
asserted.

Case B3 a): In this case GK(T) = (01, f2+2, 03) and (Y1, 92, 13) = (e1,27e; +e9, €3)
with 5 = 1(% — B1).

Now L’ is generated by ey, €3, Les and has matrix 7" = diag(u12%", up272, u3202-2).
If B2 +2 < B3 — 2, then T" is of type B3 a) and GK(T") = (31,02 + 2,83 — 2), as
asserted. Let 3 — 2 < (2 4+ 2. Since not all GK-invariants can have the same parity,
we have () #Z B2 mod 2. Hence (33 = 32 + 3, and T" = diag(u12?", 42272, u32%2+1) is
of type B2 ¢) and GK(T") = (51,52 + 1, B2 + 2), as asserted.

Bo—B1

Case B3 b): In this case GK(T') = (81, f2+1, B3+1) and (1,2, 93) = (€1,27 2 e1+
€2, c1e1 + caea + e3) for suitable ¢1,¢y € Zs. In this case we need to extract more

information about the coefficients ¢, ¢a from [Y1, proof of Lemma B.8]. If 83 = 5
/f‘igﬂl

mod 2, then ¢; = 2 and ¢, = 0. Hence L’ is generated by eq, e, %63, hence its
matrix is 77 = diag(u; 2%, 272 u32%372). If B3 — 2 > By + 2, then T" is of type B3
b) and GK(T') = (51,52 + 1,83 — 1), as asserted. If 33 = B2 + 2, then T” is of type
B2 a) and GK(T") = (1,02 + 1, 83 — 1), as asserted.

If B3 # (4 mod 2, then by loc. cit., ¢; = 9Pt
B3 > P2 + 3, hence ¢; and ¢y are divisible by 2. Hence L’ is generated by ey, e, %63,
and its matrix is 77 = diag(u12°", u922, u32%372). If B3 > B2 + 4, then T is of type
B3 b) and GK(T") = (61,32 + 1,83 — 1), as asserted. If 33 = 8o + 3, then T” is of
type B2 b) and GK(T") = (81,82 + 1, 83 — 1), as asserted.

Bz—Ba—1
2 .

and ¢ = 2 Now

Lemma 1.9 is now proved in all cases. |
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14. AN ALTERNATIVE APPROACH USING IDEAL BASES

by

Stefan Wewers

Abstract. — We give another approach to the proof of the Gross-Keating intersec-
tion formula. This approach is based on the concept of ideal bases in the theory of
anisotropic quadratic forms over Zj, and in the case p = 2 is drastically simpler than
the proof given in the previous chapter.

Résumé (Une approche alternative a I’aide des bases idéales). — On donne une autre
approche & la démonstration de la formule de Gross et Keating. Cette approche est
basée sur la notion de bases idéales de la théorie des formes quadratiques anisotropes
sur Zp, et est plus simple que la démonstration dans le chapitre précédent pour p = 2.

In this note we give an alternative proof of Proposition 1.5 and Proposition 1.6
of [R]. This proof uses the concept of ideal bases introduced in Section 6 of [B] and
thus avoids the difficulties encountered in the case p = 2. In fact, our arguments work
the same way for any p.

1. Homomorphisms between quasi-canonical lifts

1.1. Let p be a prime number and D the quaternion division algebra over Q,. The
reduced norm gives an anisotropic Qp-valued quadratic form on D which we denote
by @. The function v : D* — Z, a — ord, Q(«), is the standard normalized valuation
on D.

Let ¥ = (¢1,...,%,) be an ordered tuple of linearly independent elements of D,
and let L C D be the Zy-lattice spanned by 1. The restriction of @) to L gives L
the structure of an anisotropic quadratic Zy-module. We say that 1 is an ideal basis
of L if

v(t) <o) foralli <j

2000 Mathematics Subject Classification. — 141.05, 11F32.
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and if
u(Z xiwi) = miin v(x1;)

for all (z;) € Z;;. By [B], Lemma 6.4, this is equivalent to Definition 6.3 of loc. cit..
In particular, every sublattice L C D has an ideal basis.

By [B, Proposition 6.6], an ideal basis is also optimal. Moreover, if 1 is ideal then
the numbers a; := v(1);), i = 1,...,n, are the Gross-Keating invariants of L.

1.2. Let K C D be a subfield which is a quadratic extension of Q,. Then there
exists an element ¢ € K such that

OKZZP@Z,,~QO

and such that ¢ is a unit (resp. a uniformizer) if K/Q, is unramified (resp. if K/Q,
is ramified). For such an element, we have

(1.1) v(z + yp) = min{2ord, z,2ord, y + v(¢)},
for all z,y € Q,. It follows that (1,p"y) is an ideal basis of
Or - Zp (&) Zp " p"'@v

the unique order in Ok of conductor p”, for all r > 0.

1.3. Let G be the unique formal group of height 2 over k = F,. We identify the ring
of endomorphisms of G with the maximal order Op of D. Note that for v» € Op the
integer v(1)) is equal to the height of the isogeny v : G — G.

Fix two positive integers r, s > 0, and let F., Fy be quasi-canonical lifts of G of
level r and s, with respect to the subfield K C D. We assume that F,., F are defined
over A, a complete discrete valuation ring which is a finite extension of the ring of
Witt vectors over k. We denote by

H, s = Homgu (F, Fy)

the group of homomorphisms of formal groups F, — F,. This is a free Z,-module of
rank 2. Tt is also a right (resp. left) module under the order O, = End(F}.) (resp. the
order Oy = End(Fy)).

Reducing a homomorphism F,. — F, to the special fibre yields a Z,-linear embed-
ding H, ; — D. Via this embedding we may consider H,.  as a quadratic Z,-module.

Proposition 1.1

1. As a right O,-module, H, s is free of rank 1, generated by a homomorphism
P 2 B — Fs of height |s —7|.

2. The Gross-Keating invariants of H, s are (|s —r|,r + s) if K/Q, is unramified
and (|s —rl,r + s+ 1) if K/Q, is ramified.
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Proof. — Replacing all isogenies by their duals, we may assume that r < s. Let
F/A be the canonical lift of G with respect to the embedding K C D. By [Wwl,
§4], we may identify F,. with the quotient of F' corresponding to the superlattice
T,. DT := Ok defined by

T, =17, p "+ Ok
(and similarly for Fy). By [Wwl, Corollary 2.3], this presentation of F., Fy yields
an isomorphism of right O,-modules

H.s 2 {a€ Ok |aT, CTs}.

We let ¢y € H, s denote the element corresponding to 1 under this isomorphism.
Clearly, the height of ¢; equals the index of T} in T, which is s —r. To prove Part 1
of the proposition, it remains to show that a7, C T if and only if @ € O,. One
direction is clear. For the other direction, fix « € Ok with a1, C Ts. In order to
show that o € O,, we may add any element of Z, to o. Hence we may assume that
a = xyp, where x € Z,, and ¢ is as in Section 1.2. Our assumption implies that

ap " =ap o €Ts =Ly p DLy .

We conclude that p"|z and hence o € O,.. This proves Part 1.

Set 1o := p"pipy. Clearly, (¢1,12) is the basis of H,. s corresponding to the ideal
basis (1,p) of O, under the isomorphism O, = H, ,. This isomorphism is not an
isometry, but for ¢ = o - ¢y € H, 5, with a € O,., we have

v() =v(a) + (s —r).

Therefore, it follows from (1.1) that (11,2) is an ideal basis of H, ;. By the choice
of ¢ € K in Section 1.2, we get v(2) = s+ r (resp. v(¢2) = s+ r+ 1) if K/Q, is
unramified (resp. ramified). This completes the proof of Part 2 of the proposition. O

1.4. We choose a uniformizer A of the discrete valuation ring A. For n > 0 we set
A, = A/(A"). Let H, ., denote the subgroup of Op consisting of endomorphisms
1 : G — G which lift to a homomorphism F, ® A,, — Fs ® A,.

Given an element ¢y € Op — H, s, we define two integers,

lr,s("ﬁ) = maX{”("/j + Cb) I ¢ € Hr,s}
and

nys(¥) = max{m | € Hy s.m}

We let e denote the absolute ramification index of the discrete valuation ring A.

Proposition 1.2. There exists a constant ¢, s, only depending on (r,s), such that
the following holds. If I, s(¥) > r+s—1 then
e
Nys (V) = ers + 5 s (Y).

2
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Proof. — First we consider the case r = s. Then we may assume that F,. = F;. This

is the case studied in [V1]. By aloc. cit., Proposition 3.1, we have for I, s(¢) > 2r — 1
- lrs() +1

(1.2) meaw) = a(r — 1)+ (L)

where a(k) = (p* —1)(p+1)/(p — 1). Hence the proposition is true for r = s.

For the general case, we may again assume that » < s. By induction on s, we will
reduce to the case r = s. Suppose that the proposition is proved for some pair (r, s)
with r < 's. Let F,., Fs, Fs41 be quasi-canonical lifts of level r, s,s + 1. We want to
prove the proposition for the pair (r,s 4+ 1). By Proposition 1.1.1, the group Hy s41
is generated, as a right Os-module, by a homomorphism 3 : F, — F,,; of height one.
Moreover, the map 1 — [ is an isomorphism of Z,-modules H, = H, sq1.

Let ¢ € Op—H, 511 with [, s11(¢) > s+r. In a first step we will assume in addition
that either » > 0 or that I, s4+1(¢) > r 4+ s+ 1. It is no restriction of generality to
assume that v(¢) = I, s4+1(¢0). Then v(v)) > 0 and we can write ¢ = (v¢’, with
Y € Op. Tt follows from the assertions made in the preceding paragraph that we

have

(1.3) Lesi1(¥) =L s(¥) + 1.

In particular, I, s(¢') > r + s. On the other hand, [Ww1, Corollary 6.3], says that
(1.4) Nrs1($) = 1y (V) + e/ess,

where we use the following notation. Let M = K - W[1/p], and let Op; be its ring
of integers. By M, we denote the ring class field of OF C O, by Oy, its ring of
integers, and by ey its absolute ramification index. Then Oy, is the minimal subring
of A over which Fy can be defined. So for r > 0, the proposition follows from (1.3),
(1.4) and induction.

Unfortunately, for » = 0 the above argument proves the claim only for the weaker
bound I, s > r + s = s. The problem is that for s = 1 and [ = 0 the element % is a
unit in Op, and so we cannot divide by # and reduce to the case s = 0. However,
the argument can be used to compute the value of the constant ¢, . For instance,
for (r,s) = (0,0) we have ¢po = ¢/2 by (1.2), and so by (1.3) and (1.4) we get
co,1 = e/ey. Therefore, the proposition is proved if we can show that for lo1(y) =0
we have n =ng1(¥) = e/es.

Since lp,1 (%) = 0, the endomorphism ¢ is an automorphism of G. Let FY¥ denote
the lift of G obtained from F, by composing the isomorphism F,. ®4 k = G with
1. Then ¢ lifts to a homomorphism F, — Fy; modulo A" if and only if the two
deformations F¥ ® A/(A") and Fy @ A/(A\") are isomorphic. This, in turn, means
that w(F¥) = u(Fs) (mod A") (here u(F) € A denotes the modulus of a lift of G
defined over A). By [Ww1, Corollary 5.6], the valuation of u(F¥) (resp. of u(Fy)) is
equal to e/e, (resp. equal to e/es). Since e, = ey < e5 = e, the maximal value that
n can take is e/e;. This is what we still had to prove. O
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2. The modular intersection number

2.1. Let p be an arbitrary prime and k = IF,. Let G be the (unique) formal group of
height 2 over k. We identify Endx(G) with the maximal order Op of the quaternion
division algebra D over Q,. Let W = W (k) denote the ring of Witt-vectors over k.
Let (I',T”) be the universal deformation of the pair of formal groups (G,G). It is
defined over the universal deformation space S = Spf W {[¢, t']].

Let L C Op be a sub-Z,-module of rank 3. We denote by @ the quadratic form
induced on L by the reduced norm on Op. For ¢ € L we define v(¢)) := ord, Q(¢).
Choose an ideal basis (91,12, 3) of (L, Q), see Section 1.1. Let a; := v(3);). The
numbers ay, ag, az are the Gross—Keating invariants of L.

For i = 1,2, 3, let 7; denote the closed subscheme of S corresponding to the ideal
I<W/[t,t']] which is minimal for the property that 1; lifts to a homomorphism I — I"/
modulo I. The following proposition corresponds to Proposition 1.5 of [R].

Proposition 2.1. — Ifas <1 then az =1 and

1, for as = 0,
(T, ' T2 T3)s =
2, for ag = 1.
Proof. — Since @ is anisotropic, the a; cannot have all the same parity. Therefore,

a1 < az < az <1 implies ag = 0 and a3 = 1. In particular, v; is an automorphism
of G. Tt follows that 7; = Spf W{[t]], and that we may identify I'|z, with I'|7, via
1. So for the rest of the proof, we assume that ¥; = 1 € Op and consider 7,73
as closed subschemes of &’ = Spf W/{[t]], the universal deformation space of G. For
1= 2,3, 7; is defined by the condition that 1; lifts to an endomorphism of T

Let O = Zp[t1)2] C Op denote the subring generated by 5. Since (¢ = 1,1)9) is
an ideal basis of O, we have

as = v(¢2) = max{v(z + 2) | x € Zy}.

If as = 0, then it follows that O = Ok is the maximal order of K C D, an unramified
quadratic extension of Q,. Therefore, To = Spf W C &’ and F' := I'|7, is the canonical
lift corresponding to the subfield K C D. Moreover, in the notation of §1.4 we have
I =1loo(t¥3) = v(¥3) = as. It follows from [Ww1], Theorem 3.3 (see the proof of
Proposition 1.2) that 73 N 72 C 73 corresponds to the ideal (p™) < W, with
[+1 az +1 _

e =

2 2

n =mngo(Y3) = L.

This proves the proposition for as = 0.

If ap = 1, then O = Ok is also the maximal order of K, but K/Q, is ramified.
With the same arguments as above, it follows that 75 = Spf O); C &' is the canonical
locus corresponding to the subfield K C D. Applying again [Ww1], Theorem 3.3, we

¢
ge I4+1

Tl:n070<”(/}3)= e=a3+1:2.

This proves the proposition for as = 1. O
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2.2. The next proposition corresponds to Proposition 1.6 of [R].

Proposition 2.2. — Suppose that {3 = pyh, for some ¥4 € Op. Let T{ C S be the
closed formal subscheme corresponding to v3 and S,y C S the special fiber. Then

(T T2 B)s = (T, - T T)s + (T1 - Tz - S(p))s-

Proof. — Let (F,, Fs) be a pair of quasi-canonical lifts of G of level r and s, with
respect to the same subfield K C D. The set H, s := Hom(F;., Fy) is a sub-Z,-module
of Op of rank two. We consider all pairs (Fy, Fs) such that ¢1,12 € H, ;. Note
that (11,12) is, by construction, an ideal basis of its linear span in H, s. Therefore,
Proposition 1.1.1 shows that

a; > r—sl, az>r+s+e,
where € = 0 if K/Q,, is unramified and € = 1 otherwise. We claim that

(2.1) a3 =l s(¥3) == max{v(ys + ¢) | ¢ € Hr s}

(this notation was already used in the previous section). Indeed, since 91,9, 13 is
an ideal basis of L we have

(2.2) ag = v(¥3) = max{v(z191 + 222 + V3) | 1,72 € Zyp}.

Therefore, the inequality ‘<’ in (2.1) follows from the inclusion (¥1,%2) C Hyrs. On
the other hand, [B, Corollary 6.7], shows that (2.2) still holds if we allow z1, 29 € Qp.
Hence the inequality ‘>’ follows from the inclusion H,. s C (11, 12) ® Qp, proving the
claim. We conclude that I, s(3) = az > a2 > r + s + €. In fact, we even have

(2.3) lrs(3) >r+s+1.

For if K/Q, is unramified, then a; and a, are even and so az must be odd.
By [B], Corollary 6.7, (1,2, 9%) is again an ideal basis of its linear span (in some
order). Therefore, we can apply the same argument to 5. We get

(2.4) Lrs(h) = lrs(th3) —2 > 7+ 5 — 1.

For a € Of, let F denote the deformation of G obtained by composing the
identification F,, ®k = G with a. Define C, s = C(F, Fs) C S as the closed subscheme
where Dl¢, , = F* and I'|¢, | = F¥, for some o € OF. It follows from the results of
[Ww1] that C, s & Spf Oypy,, where t = max{s, r}. Moreover,

/Tl . 7—2 = U Cr,s
(Fr,Fys)
is the decomposition into irreducible components. To prove the proposition it there-
fore suffices to show that

(25) (Cr,s . 73)5 = (CT,S '7—3/)5 + (CT»S : S(P))S
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for all pairs (F}, Fs). We also may assume that 7 < 5. Then (Cs - Sp))s = e is the
ramification index of Oy, over W. Moreover, in the notation of the last subsection,
we have

(2.6) (Crs - Ta)s = nrs(¥3),  (Cris - T3)s = nrs(¥3).

However, by (2.3), (2.4) and Proposition 1.2 we have n, s(¢3) = n, s(¥5) + es. This
proves (2.5) and finishes the proof of the proposition. a
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15. CALCULATION OF REPRESENTATION DENSITIES

by

Torsten Wedhorn

Abstract. — We calculate for all primes p > 2 the local representation density of a
ternary quadratic form Q over Zj, in a quadratic space of the form N_LH", where N is
a quadratic space of rank 4, H is the hyperbolic plane, and r > 0 is any non-negative
integer. Our principal tool is a formula of Katsurada. This defines a rational function
fq,~n in p~". We also determine the derivative of fg n and relate it to the arithmetic
intersection number of three modular correspondences.

Résumé (Calcul de densités de représentation). — On calcule, pour tous les nombres
premiers p > 2, la densité de représentation locale d’une forme quadratique ternaire Q
sur Zp dans un espace quadratique de la forme N LH", ou N est un espace quadratique
de rang 4, H est le plan hyperbolique, et r est un entier > 0. Notre outil principal
est une formule de Katsurada. Elle est donnée par une fonction rationnelle fo n en
p~". Nous déterminons également la dérivée de fg n et nous la relions au nombre
d’intersection arithmétique de trois correspondances modulaires.

Introduction

In this note we consider local representation densities of ternary quadratic spaces
and derivatives of associated rational functions. These results are used in [RW] to
relate the arithmetic intersection number of three modular correspondences (7, -
Ty - Tms) to a Fourier coefficient of the restriction of the derivative at s = 0 of a
Siegel-Eisenstein series of genus 3 and weight 2. We also obtain an explicit formula
for the integers 3;(Q) which occur in [Go2].

Let @ and N be quadratic spaces over Z,, of rank 3 and 4 respectively, and let H
be the hyperbolic plane over Z,. Denote by a,(Q, N L H") the local representation

r

density, compare [Wd1, 4.3]. This is a rational function fo n(X)in X =p™".
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In the first section we consider the case that N is anisotropic and that » = 0:

(1) Let D be “the” quaternion division algebra over Q, and N = Op be its maximal
order endowed with the reduced norm. Then we compute o,(Q, N) for any
ternary form @ by a direct calculation (Theorem 1.1), following closely [GK,
section 6].

The value obtained is of course 0 if @ is isotropic, and for anisotropic Q we will
see that it does not depend on Q.

In general it is very difficult to compute local representation densities a,(Q, N),
and their computation has a long history. We give only a few references: For p # 2
a general explicit formula has been given by Hironaka and Sato [HS] for arbitrary
quadratic spaces @ and IV over Z,. If the rank of @ is 2, Yang has given a formula
for ap(Q, N) in the case of p = 2 [Y1]. We will use a result of Katsurada [Ka] who
calculated a,(Q, N) for arbitrary p and @ in the case that N is an orthogonal sum of
copies of the hyperbolic plane H.

In the second section we are interested in the following values:

(2) Let N = H?. Then we specialize Katsurada’s formula for a,(Q,N L H") =
ap(Q, H™?) to the case where Q is a ternary form and express it in terms of
a refinement of the Gross-Keating invariants (see [B]) of the ternary form Q.
This is done in 2.11.

(3) For @ (ternary and) isotropic we specialize this formula to 7 = 0 and therefore
obtain a,(Q, H?) (Proposition 2.1) (for ) anisotropic, a,(Q, H?) = 0).

(4) Finally we calculate for N = H? and for ) a ternary anisotropic quadratic form
the derivative ainQsz (X) at X =1 (see 2.16).

We remark that the values obtained in (3) and (4) depend only on the Gross-
Keating invariants of the ternary form @ although the value in (2) depends on a
refinement of these invariants.

Acknowledgements. — 1 am grateful to T. Yang for spotting a mistake in an earlier
version of the manuscript.

1. Calculation of the representation density in the anisotropic case

1.1. We fix a prime number p, let D be “the” quaternion division algebra over Q,,
and denote by N = Op the maximal order of D which we consider as a quadratic
space of rank 4 over Z, with respect to the reduced norm. Let @ be any ternary
quadratic form over Z,. In this section we are going to calculate the representation
density a, (@, N).

As N is an anisotropic quadratic space, @ is represented by N if and only if @ is
anisotropic. In this case the result is:
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Theorem 1.1. — Let (Q be anisotropic. Then
1
(@, N) =2(p+1)(1 + ;)-

1.2. For the proof we quote the following lemma from [Ki] Theorem 5.6.4(e):

Lemma 1.2. — For any integer r € Z we have
ap(pTQv N) = aP(Q’ N)

1.3. Proof of Theorem 1.1. — By Lemma 1.2 we can assume that the underlying
Zp-module of the quadratic space @ is a sublattice A in Op such that A ¢ pOp.
Clearly any element of O(D, Nrd) preserves N and hence O(D, Nrd) acts on

Ay (Q.N) = {0: Q/p'Q — N/p"N | Nrd(o(2)) = Q(x) mod p }
for all r > 1. By definition (see [Wd1, 4.3]) we have
ap(Q,N) = (p") *#A4,-(Q, N)
for r sufficiently large.

The dual lattice of N = Op with respect to the pairing associated to the quadratic
form is NV = m~! C D where m is the maximal ideal of Op. We claim that the
induced action of SO(D,Nrd) on

Byr(Q,N) :={o: Zz?; — N/p"m~ !N | Nrd(o(z)) = Q(x) mod p" }

is transitive for » > 1. For this it suffices to show that SO(D,Nrd) acts transitively
on the set M of all isometries 6: @ — N. But by Witt’s lemma, O(D,Nrd) acts
transitively on M. For every such & the stabilizer in O(D, Nrd) is nothing but the
orthogonal group of the orthogonal complement of the quadratic Q,-space generated
by &(Q). As this complement is a one-dimensional space, we see that SO(D, Nrd)
acts in fact simply transitively on M.

Using [Wd1, Lemma 1.6] we identify SO(D, Nrd) with

{(d,d") € D* x D* | Nrd(d) = Nrd(d') }/Q, .
This group contains the subgroup of index 2
G ={(d,d") € OFf x OF | Nrd(d) = Nrd(d') 2.

Therefore G acts with two orbits on Bpr(Q, N). Let G be the quotient of G by the
subgroup generated by

{(d,d)eG|d=d =1 (modp'N)}

and by 1 +p"~10 p, diagonally embedded in G. Then G acts faithfully with 2 orbits
on B,r(Q,N). As

#Apr (Q,N) = (#B,r (Q,N)) - (#(m™"/Op))?,
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we see that

#A (Q,N) = 2#G)(#(m™" /Op))* = 2(p+ 1)%* "
It follows that

ap(Q,N) =p~*2(p+1)*p" ' =2(p+ 1)(1 + %).

2. Calculation of the representation density in the hyperbolic case

2.1. Again we fix a prime number p. For any element a € Q) we write ord(a) € Z
for the p-adic valuation of a.
We denote by H the quadratic space over Z, whose underlying module is Zf) and

whose matrix with respect to the standard basis is (2 %) This means that the
quadratic form is given by Z2 > (z,y) — zy. i

Note that H? 2 (M(Z,), det).

Let (M, Q) be any quadratic space over Z, of rank 3. In this section we will compute
the representation density a, (M, H™2). In fact, there is a polynomial fa(X) € Q[X]

such that fa(p™") = ap(M, H?>T") ([Ka]). We are interested in
(2.1) (1) = oy (M, H?)

and, for (M, Q) anisotropic, in

0
0X
The first value is given in 2.12 and the second in 2.16.

(2.2) fu (X)) x=1.

2.2. We use the formulas by Katsurada [Ka| but we express them in terms of
the Gross-Keating invariants (cf. [B]) of the ternary space (M,Q), an invariant
£=¢(M) e {~1,0,1}, and an invariant = n(M) € {+1}.

The invariant 7 is equal to +1 if (M, Q) is isotropic and equal to —1 if (M, Q) is
anisotropic.

The Gross-Keating invariants consist of a tuple of integers GK (M) = (a1, az,as3)
such that 0 < a; < as < a3. In addition, if a; = as mod 2 and ay < ag there is a
further invariant egx (M) € {£1}.

In fact, we will not need the invariant eqx (M) directly in the sequel, as £(T') is
a refinement. But we remark that the final expressions for (2.1) and (2.2) depend
only on n(M) (that is, whether (M, Q) is isotropic or not) and on the Gross-Keating
invariants GK (M) and egx (M).

If T is the matrix associated to (M, Q) and a Zy-base of M, we also write n(T),
GK(T), eai(T), and £(T).
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2.3. Recall the Hilbert symbol (a,b), € {+1} fora,b € Q. Tt is uniquely determined
by the following properties (where a,b,b" € Q,, u,v € Z;):

(a,b)p = (b,a)p,
(a,bb’), = (a,b)p(a,b)p,
(pap)p = (—lap)p

(u,p)p = (%)

(U, v)P = ]-7

and, for p odd, by

and, for p = 2, by

+1, ifu==41mod 8§,
(ua2)2 = {

—1, otherwise,

+1, ifwor v=1mod 4,
(U,U)z -

—1, otherwise.

2.4. For any symmetric matrix T € Sym,, (Q,) we denote by h(T") = h,(T) the
Hasse invariant of the associated quadratic space (M, Q). We use the normalization
in [Ki]. For m = 3 we have

W(T) = (=1)%»,  if (M, Q) is isotropic;
—(=1)%», if (M, Q) is anisotropic
by [Ki, 3.5.1]. Here 2, is the Kronecker delta.

2.5. In the next sections we recall some results from [B] (cf. also [Y1]). We start with
the case p > 2. In that case there exists a basis (e;) of M such that the matrix T = (¢;5)
associated to Q with respect to this basis (i.e., t;; = 2(Q(e; + ¢€;) — Q(e;) — Q(e;)))
is a diagonal matrix. If we write t;; = u;p® for a; € Z and u; € Z;j, we can assume
that a; < az < ag. Moreover, if a; = a;11 we can assume that u;41 = 1. Then the
Gross-Keating invariants are given as follows. We have

GK(T) = (al,ag,ag).

If a; = a2 mod 2 and as < as, we have

ecx(T) = <—u1u2).

p

We set
&) (%), if a1 = ap mod 2;
0, if a1 # ag mod 2.
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Finally, let 7,7 € {1,2,3} with ¢ # j and a; = a; mod 2 and define k € {1,2,3} by
{1,2,3}\ {i,j} = {k}. Then T is isotropic if and only if (—u;uj,p), =1 or ar = a;
mod 2.

2.6. Now assume that p = 2. In the sequel K will denote one of the matrices

1 1 1
H:( 2> or Y::( 2)
3 0 ;1

There exists a basis B of M such that the matrix T' associated to ) with respect
to B is of one of the following forms.

Either @ is not diagonalizable (case A). Then we distinguish two subcases:
(A1) T = diag(u2%,2°K) where o < 3 are integers and u € Z; . Then

GK(T) = (a, 8, 9)-

= O

We set
1, if a; = a2 mod 2;
0, if a; # as mod 2.
(A2) T = diag(2° K, u2”) where o < 3 are integers and u € Z3 . Then
GK(T) = (o, 0, 8).
In this case egk (T) is defined and we have
+1 if K = H;
eax(T) = .
-1 ifK=Y.

We set £(T) := eqx(T).
In the nondiagonalizable case A, T is isotropic if and only if K = H or a = 8
mod 2.

Now assume that T is diagonalizable over Z2 (case B), i.e., there exists a basis such
that T = diag(u12°1, u92%2, u327%) where 0 < 31 < 32 < 33 are integers and u; € Z .
Then there are four subcases (here our subdivision of cases is different from [R]):

(B1) £y # B2 mod 2. Then

GK(T) = (61,ﬁ2,53 + 2).

We set £(T) := 0.
(B2) 1 = f2 mod 2 and (ujuz = 1 mod 4 or f3 = f2)). Then

GK(T) - (ﬁl?ﬂz + 17/63 + 1)
We set £(T) := 0.
(B3) 81 = P2 mod 2, B3 = 2 + 1, and ujuz = —1 mod 4. Then

GK(T) = (B1,P2+ 1,83 +1).
We set £(T) := (—ujug,2)s where (, )2 denotes the Hilbert symbol.
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(B4) 1 = P2 mod 2, B3 > P2 + 1, and ujuz = —1 mod 4. Then
GK(T) = (41,52 + 2, 03).

In this case egk (T') is defined and we have
GGK(T) = (—u1u2,2)2.

We set £(T) := eqr (T).

Finally, let 7, j € {1,2,3} with ¢ # j and §; = §; mod 2 and define k € {1, 2,3} by

{1,2,3}\ {4,7} = {k}. Then T is isotropic if and only if
(—ukuj, —uin)Q = (—’U,iU,j, 2)gk+ﬁj.

2.7. Going through the cases in 2.5 and 2.6 we see that there are the following
possibilities for the value of € if T is anisotropic:

e If a1 # as mod 2, we either have §~= 0 or we have {N = —1land ag =as+ 1.

e If a; = ay mod 2, we always have ay # ag mod 2 and §~ =—1.

If T is isotropic, the possibilities for the value of € are the following:

e If a; # ay mod 2, we either have é = 0 or we have é =1land a3 =as + 1.

e If a1 = as mod 2, we either have §~= 1 or we have é = —1 and as = a3 mod 2.

2.8. By [Ka] there exists a polynomial fa;(X) = fr(X) € Q[X] such that fr(p™") =
ap(M, H**"). We use the formulas from [Ka] to compute fr. Indeed, by loc. cit.
p- 417 and p. 428 we have

fr(X) = Yp (T X) Fp(T'5 X)

with 3,(T; X) = 4(T;p 2X) and F,(T;X) = F,(T;p 2X) where 7,(T; X) and
F,(T; X) are the rational functions defined in loc. cit. p. 417 and p. 451 respectively.
Thus
(T X) = (1-p2X)(1 —p 2X?).
The function FP(T; X)) is more complicated. We will express it in the next sections
using the Gross-Keating invariants GK (T') and the invariant (7).

2.9. By [Ka] we have

P »
FP(T; X) _ Z Z pi+in+27

5 & /2—i—1

(2.3) + 77p(<§'—2)/2X¢s—5’+2 Z Z p~I X+
i=0  j=0

o o8 5—2S’+8~. .
+§2p6/2X6—62 Z EJXH'J

i=0 j=0
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where 7, 0, 5, and &' are the invariants defined on p. 450 of loc. cit. (note that in
loc. cit. the definitions of 4 and  have to be interchanged).

2.10. Going through all the cases in 2.5 and 2.6 one sees that 7, 0, 4, and &' can be
expressed as follows (where GK (T) = (a1, a2, a3) are the Gross-Keating invariants):

(2.4) _ {-i—l if T is isotropic,
—1 if T is anisotropic,

(2.5) d =ai +as + az,

(2.6) 6 =ay,

2.7) 5 {a1 + as, if a1 = as mod 2,
a1 +ag+1, if a; # as mod 2,

2.11. If we set
. {2, if ay = az mod 2,

1, if a; # az mod 2,

we can rewrite (2.3) using the invariants 1, (a1, as, as), and &:

~ ai ((11+(12—0’)/2—i o - ‘
Fp(T, X) — Z Z pz+JX1+2J
i=0 j=0

ay (a1+a2—o')/2—i
(2.8) 4+ T’Z Z p(al+a2—ﬂ)/2—an3+o+i+2j
i=0 j=0

a; az—ax+20—4

+ £2p(a1+a2—a+2)/2 Z Z nga2—0'+2+i+]‘.
=0 j=0

2.12. We now specialize to r = 0, i.e., X = 1. In that case we have
ap(T, H?) = fr(1) = (1 - p ?)* (T, 1).
If we set 3,(T) := F,(T, 1), it follows from (2.8) that

a;—1 (a1+az—0)/2
29) Bp(T) = (1+n)( Z% (i +1)p' + Z;l (a1 + 1)p")
n p(a1+a2—a+2)/2(a1 n 1)35
where )

0, iféE=0
R 0, ifg:—landag‘;"agmon;

¢ az —as + 20 — 3, ifé:l;
1, iff:—l and a3z = as mod 2.
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2.13. If T is anisotropic we have (T, H?) = 3,(T) = 0, as a three dimensional
anisotropic space cannot be represented by a four-dimensional hyperbolic space. Al-
ternatively this follows also from (2.9): By (2.4) we have n = —1 and hence it suffices
to show that R; =0 if T is anisotropic. By 2.7 we are in one of the following two
cases:

(a) £=0;

(b) £ = —1 and a3 # a3 mod 2.
In both cases we have Ré = 0 by definition.

2.14. If T is isotropic, (2.9) gives Proposition 6.25 of [GK]:

Proposition 2.1. — Let T be isotropic. Then:
(1) If a1 # a2 mod 2, we have

a;—1 ) (al+a2_0)/2 )
Bo(T)=2(>_(i+1)p'+ > (aa+1)p').
1=0 i=ai

(2) If a1 = a2 mod 2 and §~ =1, we have

a;—1 (a1+a2—0)/2
BTy =2(3 (i+Dp'+ Y (ar+1)p')
1=0 i=aq

+ (a1 + 1)(az — ag + 1)plate)/2,

(3) If a; = as mod 2 andfz —1, we have

a;—1 ‘ (a1+az—0)/2 ‘
Bo(T)=2(>_(i+Dp'+ Y (a1+1)p')

1=0 i=ay

+ (ay 4 1)plartaz)/2,

Proof. — We have n = 1, and by 2.7 we are in one of the following cases:
(a) a1 # az mod 2 and §~= 0;
(b) a1 # ay mod 2, £ = 1, and a3 = ap + 1;
(¢) a1 =asmod 2 and € = 1;
(d) a1 = as mod 2, §:: —1, and as = a3 mod 2.
In case (a), we have R; = 0 by definition, and in case (b) we also have Ry =
az — a2z + 20 — 3 = 0. This proves (1).
In case (c), we have R; = a3z —az + 1 and therefore (2).
In case (d), we have Rz = 1 which implies (3) O

Corollary 2.2. — Set A(T) = }det(2T) = 4det(T) and assume that T is isotropic.
Then B,(T') =1 if ord,(A(T)) = 0.
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Proof. — For p > 2 the equality ord,(A(T')) = 0 is equivalent to a1 = a; = a3 =0
by definition of the Gross Keating invariants (see 2.5). For p = 2 the condition
ord,(A) = 0 implies that we are in case (Al) of 2.6 with « = 8 =0 and K = H.
Therefore we have again a; = as = az = 0. Hence the corollary follows for all p from
Proposition 2.1. O

2.15. From now on we assume that T is anisotropic. We are going to calculate

0

fr(1) = 8—XfT(X)|X=1-

As T is anisotropic we have F,(T;1) = 0 and therefore

(210) F1(1) = 3p(T, 1) e BT X) e
.11) = (=5 P X e

Using (2.8) we sce that

d
F (T§X)|X:1 = + Fy + Fs.

0X
Here
a, (a1+az—0)/2—1 o
Fy = > +2p
i=0 j=0
ar1—1 3 (a14+az2—0)/2 “
_ 2 ! _ 2l
=> S (L Dip' + Y (a+ 1) L
1=0 l=a,
and

a; (a1+az—0o)/2—1

LR VD DR SRS
7=0

a; (a14az—0)/2 ,
-3 > (atartas+i-2j)p

=0 Jj=t
(Ll—l 3

= - Z (I+1)(a1 + a2 + a3 — El)pl
=0

(ar14az—0)/2 3
— Z (a1 +1)(§a1 +a2+a3—3l)pl

l:a1
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and hence
(11—1
Fi+F=Y (1+1)@3l—a —az —a)p'
=0
(a1+az—0)/2
+ Z (a1 + 1)(4l — 2a1 — az — a3)p’,

l=a1

and
Fy = plartaz—o+2)/2 al;‘ lAg
with
0, if € =0;
s — (az — az + 20 — 3)(a1 + az + a3), iff:l;
¢ as —az — 20 + 3, iff:—l,a2¢a3mod2;
3az —as +a; + 40 — 8§, ifgz—l,agzagmodz

2.16. We distinguish two cases. The first case is a1 # a2 mod 2, i.e., 0 = 1. By 2.7
we either have £ = 0 and hence Aé =0 or we have £ = —1 and a3 = a2 + 1 and hence
again Ag' = 0. Therefore we see that for a; # as mod 2 we have

a1—1

9 p !
o e (T3 X)ix=1 = ; (I +1)@Bl = a1 = a2 — ag)p
(212) (a1+a2—1)/2

+ Z (a3 + 1)(4l — 2a; — ag — a3)p'.

l=a1

The second case is a; = as mod 2, i.e., 0 = 2. Then we have a3 Z a mod 2 and

hence
a a;—1
- ' _ B !
ﬁFp(T,X)p(:l = ; (1+1)(38l — a1 —ag — a3)p
a1+az—2)/2
(2.13) (a14+a2—2)/

+ Z ((1,1 + 1)(4l —2a1 —ag — ag)pl

l:a1

+1
4 plai+az)/2 ‘“2 (a2 — a3 — 1).

Therefore we see by [R, Theorem 1.1] that in either case
J =~

a—XFp(T;X)|X=1 = —lg(Or1z¢)-
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16. THE CONNECTION TO EISENSTEIN SERIES

by

Michael Rapoport & Torsten Wedhorn

Abstract. — We consider the non-singular Fourier coefficients of the special value of
the derivative of a Siegel-Eisenstein series of genus 3 and weight 2. We identify these
coefficients with the arithmetic degrees of non-degenerate intersections of arithmetic
modular correspondences.

Résumé (Relation avec les séries d’Eisenstein). — Nous identifions les coefficients de Fou-
rier non-dégénerés d’une valeur spéciale de la dérivée d’une série de Siegel-Eisenstein
de genre 3 et de poids 2 avec les degrés arithmétiques des intersections de correspon-
dances modulaires arithmétiques.

Introduction

In a previous chapter [Go2] an expression was obtained for the arithmetic inter-
section number of three modular correspondences (7, - T, - Ty ), when their inter-
section is of dimension 0. This expression is quite complicated, and involves certain
local representation densities (3;(Q) of quadratic forms and a local intersection multi-
plicity o, (Q). It is this expression that is the main result of [GK]. However, already
in the introduction to their paper, Gross and Keating mention that computations
of S. Kudla and D. Zagier strongly suggest that the arithmetic intersection number
(T, - Ty - Ty ) agrees (up to a constant) with a Fourier coefficient of the restriction
of the derivative at s = 0 of a Siegel-Eisenstein series of genus 3 and weight 2.

In the intervening years since the publication of [GK], Kudla has vastly advanced
this idea and has in particular proved the analogue of this statement for the in-
tersection of two Hecke correspondences on Shimura curves [Ku3]. In fact, Kudla
has proposed a whole program which postulates a relation between special values of

2000 Mathematics Subject Classification. — 11E08, 11F30, 11F32, 11G18.
Key words and phrases. — Eisenstein series, local Whittaker functions, Siegel-Weil formula, local rep-
resentation densities.
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192 M. RAPOPORT & T. WEDHORN

derivatives of Siegel-Eisenstein series and arithmetic intersection numbers of special
cycles on Shimura varieties for orthogonal groups, comp. [Ku4].

The purpose of the present chapter is to sketch these ideas of Kudla and to derive
from Kudla’s various papers on the subject the statement alluded to in the introduc-
tion of [GK]. We stress that what we have done here is simply a task of compilation,
since we do not (and cannot) claim to have mastered the automorphic side of the
statement in question. We use the results of Katsurada [Ka] on local representation
densities of quadratic forms, valid even for p = 2, to relate the local intersection mul-
tiplicities to the derivatives of certain local Whittaker functions, comp. [Wd2]. For
p # 2 the corresponding calculations of representation densities are much older and
are based on results of Kitaoka [Kit].

We thank S. Kudla for his help with this chapter.

1. Decomposition of the intersections of modular correspondences

1.1. Tom € Z~o we have associated the Deligne-Mumford stack which parametrizes
the category of isogenies of degree m between elliptic curves,
Tn(S) ={f: E — E'| deg(f) =m}.
Here E and E’ are elliptic curves over S. Then 7, maps by a finite unramified
morphism to the stack M) = M Xgpecz M parametrizing pairs (E, E’) of elliptic
curves.
Let now m1, ms, m3 € Z~o and consider

T(m1,mz,m3) ={f = (f1,fo, f3) | fi: B — E', deg fi = m; },
the fiber product of Ty, , Ty, Ty over M), Denoting by @ the degree quadratic

form on Hom(E, E’), we obtain a disjoint sum decomposition,

(1.1) T (m1,ma,m3) = [[ T
T

Here )

Tr(S) = {f € Homgs(E, E')? | 5(f,f) =T},
where (f, f) denotes the matrix (a;;) with a;; = (fi, fj) = Q(fi + f;) — Q(fi) — Q(f;)-
Note that, due to the positive definiteness of @, the index set in (1.1) is Symy(Z)¥,,
the set of positive semi-definite half-integral matrices.

Lemma 1.1. — Let T € Symg(Z)Y,, ie., T is positive definite. Then there exists a
unique prime number p such that T7 is a finite scheme with support lying over the
supersingular locus of MLQ) = M®? g, F.

Proof. — Let (E,E') € M@ be in the image of T7. Since Hom(E, E’) has rank at
least 3, it follows that (E, E’) has to be a pair of supersingular elliptic curves in some
positive characteristic p. To see that p is uniquely determined by T', note that T is
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represented by the quadratic space over QQ corresponding to the definite quaternion
algebra ramified in p. However, by [Ku3, Prop. 1.3], there is only one quadratic space
with fixed discriminant which represents T'. O

1.2. In this chapter we consider, for T' € Symg(Z)Y,, the number
deg(7r) = 1g(7r) - logp ,
where p is the unique prime in the statement of Lemma 1.1, and where

lg(7r) = Z eg_l 18(0r1.¢),
€€TT(FP)

with eg = | Aut(§)]. Our aim is to compare d/\cg(TT) with the T Fourier coefficient
of a certain Siegel-Eisenstein series of genus 3 and weight 2.

We first define a class of Eisenstein series, among which will be the one appearing
in our main theorem.

2. Eisenstein series and the main theorem

2.1. Let B be a quaternion algebra over (). We denote by V' = Vp the quadratic
space defined by B, i.e., B with its norm form . We note that the idele class
character usually associated to a quadratic space, 2 — (z, (—1)™*~1/2 det(V))q is in
this case the trivial character xo (4 | n, and det(V') is a square). Let H = O(V) be the
associated orthogonal group. Let W = Q°, with standard symplectic form (, ) whose
matrix with respect to the standard basis is given by ( —013 [6‘ ) Let G = Sp(W) = Spg,
and denote by P = M.N the Siegel parabolic subgroup, with

M = {m(a) = (g ta(]”) |a€ GLs},

N = {n() = <(1) ;’) | b€ Sym, }.

Let K = Ko.Ky =[] K, be the maximal compact subgroup of G(A) with
v
Spe(Zy), if v = p < 00;
(2.1) K, = Pe(Zp) ifv=p<oo
{(%5) la+ibe UsR)}, ifv=o0.

We have the Weil representation w of G(A) x H(A) (for the standard additive
character 9 of A with archimedean component ¥ (z) = exp(27iz) and of conductor
zero at all non-archimedean places) on the Schwartz space S(V (A)3) (the action of the
elements P(A) x H(A) are given by simple formulae [We], comp. also (4.1) and (4.2)
below). In the local version at a place v, we have a representation w, of G(Q,)x H(Q,)

on S(V(Q,)?).
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We have the Iwasawa decomposition
G(A)=P(A)K = N(A)M(A)K.
If g = nm(a)k € G(A), then
la(g)] = | det(a)|a
is well-defined. For a character x of A*/Q*, we have the induced representation of
G(A), corresponding to s € C,
I(s,x) = {®: G(A) — C K-finite function |
®(nm(a)g) = x(det(a)) - la(g)|"+* - ®(g) }.
For p € S(V(A)?), we set

®(g,5) = (w(9)9)(0) - lalg)/’.
In this way, we obtain an intertwining map
(2:2) S(V(A)*) — I1(0,x0), ¢+ ®(g,0) .

Note that |a(g)| is a right K-invariant function on G(A), so ®(g,s) is a standard
section of the induced representation, i.e., its restriction to K is independent of s.
We will also need the local version I(s, x,) of the induced representation at a place v
and the G(Q,)-equivariant map

(2.3) S(V3) — I(0, x0,0)-

v

2.2. Returning to the global situation, we consider the Eisenstein series associated
to v € S(V(A)?),
E(g,s,®) = Z ®(vg,s).
YEP(Q\G(Q)
This series is absolutely convergent for Re(s) > 2, and defines an automorphic form.
It has a meromorphic continuation and a functional equation with s = 0 as its center
of symmetry.

We will now make a specific choice of ® which will define an incoherent Eisenstein
series. Let B = M2(Q) and let V(Z,) = Ma(Z,) for any p. We let ¢y = ®@yp, =
® char V(Z,), and let &5 = @®,, be the corresponding factorizable standard section.
For ®., we take the standard section uniquely determined by

B oo (K, 0) = det(k)?,

where k € K is the image of k € U3(R) under the natural identification in (2.1).
Then by [Ku3, (7.13)], ® is the image of the Gaussian ¢ under the local map
(2.3) for v = oo, where the local quadratic space is V., the positive-definite quadratic
space corresponding to the Hamilton quaternion algebra over R, and where

(2.4) Yoo (x) = exp(—7 tr(zx,z)), z € (V)2
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Since VI @ V(Ay) does not correspond to a quaternion algebra over Q, the stan-
dard section ® = P, ® P is incoherent in the sense of loc. cit., and hence (loc.
cit., Theorem 2.2),

E(g,0,®) =0.

Consider the Fourier expansion of E(g, s, @),

E(g,s,®) = Z Er(g,s, ),

TeSymg(Q)
where
Er(g,s,®) = / E(ng, s, ®) - r(n) tdn,
N(Q\N(A)
with
(2.5) Pr(n(b)) = Y (tr(Th)), b€ Syms(A).

For T € Sym;(Q) with det(T") # 0, the Fourier coefficient has an explicit expression
as a product
(2.6) Er(g,s,®) = [[Wr.w (g0, 5, ®0),
see [Ku3, (4.4)]. Here Wr ,(gv, s, ®y) is the local Whittaker function, cf. section 5.
The local Whittaker functions are entire (cf. [Ku3, (4.2) and (4.3)]), and the product
(2.6) is absolutely convergent and holomorphic in s = 0. More precisely, for Re(s) > 2,
the identity (2.6) holds and for almost all places p, the local factor at p on the right
hand side equals (s +2)71 - (25 +2)71 = (1 —p~*72) - (1 — p~2572), and for all
places the local factor is an entire function.
2.3. For T € Sym3(Q)>o, let

Diff(T, V) = {p | T not represented by V(Q,) }.

Then the cardinality |Diff (7, V)] is odd, cf. [Ku3, Cor. 5.2]. Moreover we have
Wrp(gp,0,®,) = 0 for p € DIff(T,V), cf. [Ku3, Prop. 1.4]. On the other hand,
W 00(9oos 0, Poo) # 0, cf. [Ku3, Prop. 9.5]. Hence

05(3 Er(g,s,®) > |Diff (T, V).

In particular, if E%(g,0,®) # 0, then Diff (T, V) = {p} for a unique prime number p.

2.4. We may now formulate our main theorem.

Theorem 2.1. — Let V = Ma(Q) and let & = $o, ® $f be the incoherent standard
section as above. Let T' € Sym4(Q)so with Diff (T, V) = {p}.

(i) If T & Sym4(Z)Y, then Tr = @ and &%(TT) =0 and Ef(9,0,2) = 0.
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(ii) Let T € Symg(Z)Y. Then Tr has support in characteristic p. For g =
(9oos €,€...) € G(A) with

1 z\ [y
Joo = ( 1) (J y_1/2) ) z,y S Sym3(R)7Z/ > 07

let T = goo -il3 =ax + 1y € H3. Then
det(y) deg(7r) - ¢" = k- Elp(g,0,®),

where q7 = exp(27i tr(TT)) and where the negative constant k is independent
of T.

Here $3 = {7 € Sym3(C) | Im(7) > 0} is the Siegel upper half space.

The proof of the theorem consists in calculating explicitly both sides of the identity.
The first assertion of (i) is obvious and the second is a consequence of section 5 below,
where the local Whittaker functions are related to local representation densities (see
Proposition 5.2 below). The proof of (ii) will be reduced in section 3 to a statement
about local Whittaker functions which will be taken up in sections 4 and 5.

2.5. In the rest of this section we relate the adelic Eisenstein series to the classical
Siegel-Eisenstein series, following [Kul, section IV.2]. By strong approximation,
G(A) = GQGMR)K.

By our choice of ®, which is right Ky-invariant, the Eisenstein series E(g, s, ®) is
determined by its restriction to G(R) (embedded via goo — (goo, €, €...) in G(A)).
We have

G(Z) = G(Q) N (G(R).Ky).
Also, P(Q)\G(Q) = P(Z)\G(Z), hence for g = goo,

(2.7) E(g,5,®) = > e(1900:5) - Rs(,9)
YEP(QN\G(Q)

= ) Pu(190:9)
YEP(Z)\G(Z)
1 = yl/Q
For our choice of ®,, and of g, = ( 1) ( y_l/z)’ we have

oo (Yoo, §) = det(y) 2! - det(cr + d) ™2 - | det(er + d)| %,

y = (‘Z Z) € Spg(2).

Inserting this expression into the sum (2.7), one obtains from [Kul, IV.2.23], (for
l=pn =2),
(28) E(ga S, (I)) = det(y) : Eclass(T7 5)7

where
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where
Elass (T, 8) = det(y)*/? Z det(cr +d)~2 - |det(cr + d)|~*
(c,d)

is the classical Siegel Eisenstein series (the sum here ranges over a complete set of
representatives of the equivalence classes of pairs of co-prime symmetric integer ma-
trices).

2.6. Using the comparison (2.8) between the adelic and the classical Eisenstein se-
ries, we obtain from Theorem 2.1 the following statement. We consider the Fourier
expansion of the classical Eisenstein series,

Eclass(T’ S) = Z C(T’ y7 S) qT'
TeSymg(Z)V
Here 7 = x + iy € H3 and ¢7 = exp(2mi tr(T'7)).
Theorem 2.2. — Let T € Sym4(Z)%,.
(1) Then /(T) = ((.%c(T,y, 5))|s=o0 is independent of y.
(2) If DIff(T, V) = {p}, then Tr has support in characteristic p and
deg(Tr) = - ¢!(T)

for a negative constant k independent of T .

Corollary 2.3. — Assume that there is no positive definite binary quadratic form over
Z which represents mq, mg and ms, so that the divisors T, , Tn,, and T, intersect
in dimension 0, cf. [Go2, Prop. 3.2]. Then there exists a constant k independent of
(m1, ma, m3) such that

(Tony Ty~ Tns) = K- Z (T)
TeSym;y (Z)\;O
diag(T)=(m1,m2,m3)

Proof. — The hypothesis implies that in the disjoint sum (1.1) only positive definite
T € Symy4(Z)Y occur as indices, comp. [Go2, Prop. 3.5]. Therefore the assertion
follows from Theorem 2.2. a

3. Use of the Siegel-Weil formula

3.1. Let V be the quadratic space associated to a quaternion algebra B over Q. For
@ € S(V(A)3), there is the theta series

09, @)= Y, (w(g)p)(h 'w),

zeV(Q)?
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and the corresponding theta integral over the orthogonal group H = O(V) associated
to \7,

I(g;¢) = / 0(g,h; ¢) dh.
H(Q\H (A)
Here the Haar measure dh is normalized so that
vol(FH(Q\1(A)) = 1.
We will only consider the case in which the quadratic space V is anisotropic. If @

is K-finite, then I(g; @) is an automorphic form on G(A). The Siegel-Weil formula
[KR] states that, if ¢ gives rise to ® via the map (2.2), then

(3.1) E(g,0,®) =2-I(g; §)-

Let T € Syms(Q) with det(T) # 0. Then the T*"-Fourier coefficient of I(g;@) is
equal to ([KR, (6.21)])

Bgo) = [ wan
AE\A®K) *V @

where
1

3|§

V(QF ={zeV(Q)?®|5(z,2) =T}

3.2. We now return to the situation considered in Theorem 2.1. Let V = M3(Q)
and let ® be the standard section defined in the previous section. We also fix T €
Sym;(Q)so with Diff (T, V) = {p}. Let V be the quadratic space associated to the
definite quaternion algebra B = B(P) ramified at p, and unramified at all other finite
primes. Note that V(R) = V. We consider the standard section ® which is the
image of ¢ = oo ® ¢} ® pp under

where @? = cp’;, where Poo = oo is the Gaussian (2.4) and where ¢, = char V(Z,)?,
with V(Z,) the maximal order of the division algebra B® ® Q,. Hence o, = ®oo,
®% = ®% and ® is a coherent standard section. Comparing the expressions (2.6) for
the Fourier coefficients of E(g, s, ®) and E(g, s, &J), we can write, for g = goo € G(R),
W’},p(e’ 0’ q)l))
WT,p(ea 07 @P)

We refer to Corollary 5.3 below for a proof of the fact that the denominator here is
nonzero. Using the Siegel-Weil formula (3.1) for the anisotropic quadratic space V,

E&"(gvﬂvq)) = 'ET(g7O’(i))'

we can rewrite this as

Wi (e,0,®,) )
(3.2) Efp(g,0,®) =2 2P0 [n(g: ).

T,p\€, 0, q)p)
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Now the function (s, is invariant under H(R). For

1 =z 1/2
Goo = ( 1> (y y_1/2> s T,y € SymS(R)ay > 07

the value of w(goo)Poo at t € V(R)® with 3(¢,¢) = T is equal to
(W(goo)Poo)(t) = exp(2mi tr(T'7)) det(y).
Since H(R) = O(V(R)) is compact, we may write using the product measure dh =
doch % dgh,
(3:3) 2+ Ir(g; @) = 2det(y) - " - vol(H(R), dooh) - Ir(¢y),
where

men= [ X stadn.
A@\A(hy) *€V@F

3.3. Let
H ={§=(g,9') € B* x B* | Nm(g) = Nm(g') }.

Then H’ acts on V via

jg-z=1(9.9) z=gzg".

This induces an exact sequence, where G,, lies in the center of H’, cf. (Wd1,
Lemma 1.6],

(3.4) 1 -Gy — H 2 80(V) - 1.

We fix the Haar measure on H'(A) such that the measure induced by the exact
sequence (3.4) on SO(V)(A) is the Tamagawa measure, and with the standard Haar

measure on the central idele group A* which is the product of the local measures

A f%ﬁ with convergence factors A\ = 1 — £7!, so that vol(ZX) =1. Let

K' = H(Af) N (053 @Z)% x (05 @ 7)%).

Proposition 3.1. — Let

Trl= > et

§€Tr (Fyp)

with eg = | Aut(§)|. Then
[T7| = K1 - I (&5),
where K, = 2 vol(K')~1.
Proof. — We choose a finite set of double coset representatives h; € H'(Af) such
that
H'(Af) = [[ H@h;K'.
j

SOCIETE MATHEMATIQUE DE FRANCE 2007



200 M. RAPOPORT & T. WEDHORN

Since each double coset H'(Q)h; K’ is stable under 72Qx = A7, we obtain a disjoint
decomposition,

= H SO(V)(Q)pr(h;)pr(K).
Let

=H'(QnNh;K'h; "
Note that VOI(SO(V)(Q)\SO(V)(A)) = 2. We have

H(Ag) = SO(V)(Ay) x pa(Ay).
Hence
1= V01( (V)(@\O(V)(A))
= —Vol(SO )(Q )\O( )(A))

= —vol(SO(V)( N\SO(V)(A)) vol(ua(4))
= vol(p2(A))
and therefore

vol(u2(Q)\p2(A)) = 5

Let us normalize the Haar measure on us(R) by vol(u2(R)) = 1. Then we get
vol(p2(Q)\p2(Af)) = 4. Then we obtain as in [Ku3, (7.28)],

Ir(¢r) = > @p(htex)dshde
/ /

SO(V)(@\SO(V)(Af) 12 (@\pz(Af) €V (Q)F

-1 / S s hie) dsh

SO(V)(@)\ SO(V)(A,) *EV( Q%

_ %Z / ST r(ha)dsh

7 SO(V)(@\SO(V)(@pr(h )pr(k’) zeV(Q)%

~ 1l (pr(K")) Z Z p(hy ')
2 - = m

Here T'; ,, is the image of f‘;’m in Q*\H'(Q) = SO(V)(Q). Therefore we have |T; .| =
R lf‘;zl Note that T'; . is trivial since  spans a three-dimensional subspace of the
4-dimensional space V.

To make the connection with 77, note that the supersingular locus of M;,Q) can be
written as a double coset space (cf. [Mi, 6]),

(MP)ss = H'(Q)\H'(As)/K’.
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Here we chose (Fy, Fy) as a base point, such that K’ is the stabilizer of the Tate
module T'(Ey) x T'(Ey) (completed by the Dieudonné module at p). To § = (g,4') €
H'(Ay) corresponds Ey x Eg with the diagonal isogeny,

(9,9"): Eo x By — E4 x Ey.
The lattice Hom(E,, E,) in V(Q) = Hom(Ey, Ey) ® Q is given by
Hom(E,, Ey) = {y € B | yg(T(Eo)) C ¢'T(Eo)}
={yeB|g lygeV(Z)}
={yeB|i'lyeV(@)}
Hence we obtain

|7r| = > @17 " y)

[y, g1 €H (Q\(V3(Q)rxH'(Af)/K)

=> > syt

J zev3(Q)r
=2 vol(pr([i"))_1 I7r(@y).

Since vol(K') = vol(pr(K’)), the result follows. O

3.4. The next result will be proved in section 5.6.

Theorem 3.2. — The lengths of the local rings Or,. . at all points § € Tr(F,) are all

equal to
2 Wq’w’p(e,O,@p)

<p_ 1)2 WT’p(evov(i)p)

1

lg(O7, ) = — “(logp)™".

3.5. We will now prove Theorem 2.1 using Theorem 3.2. Let
H' ={g=(g,9') € GLa x GL2 | det(g) = det(g")},
K' = H'(Ay) N (GLy(Z) @ GLy(Z)).
Then H' is an inner form of H'.
We now fix Haar measures on H'(A) and on H'(A) following [Ku3, p. 573]. More
precisely, in loc. cit. Kudla defines for any quaternion algebra B over Q a Haar
measure on (B ® A)* which is decomposed, i.e., the explicit product of local Haar

measures on (B ® Q,)* for all places v. By our fixed choice of Haar measure on A*,
we therefore also obtain a decomposed Haar measure on H(B)'(A), where

H(B) ={3=(9,9') € B* x B* | Nm(g) = Nm(g")}.

By loc. cit., the induced Haar measure on SO(V(B))(A) is the Tamagawa measure,
as required above.
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We apply this construction to B = M3(Q) and to B = B = B®) the definite
quaternion algebra, ramified at p and unramified at all other finite places. Then we
have for these Haar measures (comp. [Ku3, Lemma 14.10]),

vol(K)
1 I’{f = (p - 1)2
vol(K,)
and
vol( K’
W)~ p-1p2
vol(K")
Hence
q" - deg(Tr) = " 15(Or;) - logp
= qT lg(OTT,g) : ITT| : lng
2 Wi ,(e,0,®p) .
=~ 2 T I ()
(p—1)2-vol(K') Wrp(e, 0, 0p)
2
=———="E; ®) det(y) vt
VOl(K/) T(ga(]v ) € (y) v,
where we used (3.2) and (3.3) in the last step, and where v = vol(H(R), dsoh). This
proves the main theorem with the negative constant k = —W St

4. The Weil representation

4.1. The remainder of this chapter is devoted to the proof of Theorem 3.2. This is
a purely local statement.

We fix a prime number p and change our notation: We replace V by V ® Q,,, G
by G ® Qp, 9 by its localization v, (of conductor zero), etc. At the same time we
consider a more general situation.

4.2. Instead of the quadratic space associated to a quaternion algebra, we now let
V be any Qp-vector space and (, ) a symmetric nondegenerate bilinear form on V.
Then Q(z) = 1(x,) is a quadratic form on V.

We assume that n := dim (V') is even. In fact, we will only need the case V =B L
H"” where B is a quaternion algebra over Q, endowed with the reduced norm, and
where H" is the orthogonal sum of r copies of the hyperbolic plane H.

We denote by det(V) the image in Q) /(Q))? of the determinant of the matrix
((vi,vj))i; where (v1,...,vy,) is some basis of V. As in 2.1 we have the quadratic
character xv of Q, associated to V' given by

xv (@) = (@, (=1)"" D2 det(V)), = (, (=1)™2 det((vi,v7))ig)p,

where ( , ), denotes the Hilbert symbol.
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4.3. Let (W,(, )) be the space Q2™ endowed with the standard symplectic form
whose matrix with respect to the standard basis is given by (_7 ). We consider
W as vector space of row vectors, in particular the canonical GLgyy,-action is from the
right. To prove Theorem 3.2 we will need only the case m = 3.

As in 2.1 we denote by P = M N the Siegel parabolic subgroup of G = Sp,,,(Qp)
over Q, where

M = {m(a) = (g tao_l) | a € GLn(Qp) },

vy = (T ) ) 1o e sym@)).

Let K = Sp,,,(Z,) C G the standard maximal compact subgroup and set

0 I,
w.—<_1.m O)GG.

4.4. In the sequel we let a € GLj, act on V™ =V ® Q)7 via right multiplication,
which we denote by x — za.
Moreover for z,y € V'™ we set

(‘ray) = ((xiayj))ij € Symm(QP)

4.5. Associated to the quadratic space V and the fixed additive character ¢ there is
a Weil representation wy of G on the vector space S(V™) of Schwartz functions on
Vm. Forg=(2%) € G, peSV™), and x € V™ we have by [Ku2, Prop. 4.3] (cf.
also [Rao, Lemma 3.2], and [We]),

(wv(g)(e)(z) =v(V,9,9)
1 1
(e, b) + (abe) + 5 (e vd)) eoa + ) oy
V™ /Ker(c) 2 2
where y(V, 4, g) is a certain 8" root of unity depending on V, 1, and g such that

v(V,9,e) = 1 and where dyy is a suitable Haar measure. We make this more explicit
in three special cases:

(a.) (v (m(@)p)(a) = xv (det )] det af" % (za)
(4.2 (v (D)) (x) = ¥ tr{(z, 7)) (),
(1) (D)) =2V) [ 0= (o)) o) dy
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where in (4.3) dy is the Haar measure on V" which is self dual for Fourier transform
and where v(V) = v(V, ¢, w™1) is the 8% root of unity explicitly given in [Ku3, A.4].

5. Local Whittaker functions and representation densities

5.1. We keep the notation of section 4 and assume from now on that m = 3 and
hence G = Spg(Qy), and n = 4.

For s € Clet I(s, xv) be the degenerate principal series representation of G induced
from P, i.e., I(s, xv) consists of K-finite functions ®(-,s): G — C such that

®(nm(a)g, s) = xv(det a)| det a| 2@ (g, 5)

for all n € N, a € GL3(Q,), and g € G.
We also set for T' € Symg(Q,), as in (2.5),

Yp: N — C*, Pr(n(b)) = P (tr(Th)).

5.2. Forse C, ® e I(s,xv), T € Sym3(Q,) with det(T) # 0, and g € G we define
the local Whittaker function by

Wi (g,s,®) = /N B(w ' n(b)g, s) wr(n(b) " db

where db is the Haar measure on Syms;(Q),) which is selfdual with respect to the
pairing

Y Syms(Qp) x Syms(Q,) — C, (b, ") — Y(tr(bb)).

As the conductor of v is zero, we have
(5.1) {b€ Syms(Q,) | Yn(b,b') =1 for all b € Symy(Z,) } = Symy(Z,)".

Therefore

volgp(Syms (Zy,) )volgs(Symg (ZP)V) =1.

\

As the index of Symy(Z,) in Symy(Z,)" is 2927, we obtain

(5.2) volay(Syms(Z,)) = 9= (3/2)d2p

It is known that Wr(g, s, ®) converges for Re(s) > 2 and admits a holomorphic
continuation to the entire complex plane, if ® is standard, i.e., if its restriction to K
is independent of s [Ku3, Prop. 1.4]. Moreover, we will see in Proposition 5.2 below

s

that Wr(e, s, @) is a polynomial in p~*.
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5.3. For ¢ € S(V?) we set

D(g,8) = (w(9)e)(0) - la(g)[*.

It follows from (4.1) and (4.2) that ®(g,s) € I(s,xv). In this way, we obtain a
G-equivariant map similar to (2.2),

S(VS) —>I(O7XV)7 90"‘_"1’(970)

5.4. For r > 0 we denote by the H, the quadratic space fo whose associated bilinear

form has the matrix % ( IOT IO’) with respect to the standard basis, and set

V.=V 1L H,.

It is known [Ku3, Lemma A.2] that wy, = wy ® wy, as representations of G on
S(V3) = S(V®) & S(H).
We also recall Lemma A.3 from [Ku3] (see also [Ral, Remark I11.3.2]):

Lemma 5.1. — Let ©0 € S(H?) be the characteristic function of Ma,3(Z,) and ¢ €
S(V3) with associated ®(g,s) € 1(s,xv). Set pl"l = o2l € S(V3) = S(VHRS(H?).
Then we have for all g € G andr >0

@(g,7) = (wv, (9)¢")(0).

5.5. We fix a Z,-lattice L of V such that (, ) is integral on L. Choose a Z,-basis
of L and let S, be the matrix associated to the quadratic form on V,, = V & H,
with respect to the chosen basis of L and the standard basis of H,.. In particular,
the matrix of the bilinear form ( , ) with respect to the chosen base of L equals
QSO.

Let ¢ € S(V?) be the characteristic function of L? with associated ® = ®(g, s) €
I(s,xv). Then the local Whittaker function Wr(e, s, ®) interpolates the local repre-
sentation densities:

Proposition 5.2. — For all integers r > 0 we have
Wr(e,r, @) =27 03/2% | det So[*/ 2y (V) o (T, 5,

where we denote by ap( , ) the local representation density as normalized in [Wd1,
S

(4.4)]. In particular, Wr(e, s, ®) is a polynomial in X =p~5.
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Proof. — The right hand side is a polynomial in X = p~" [Kit] and the left hand
side is an entire function in r. Hence it suffices to show the identity for r > 2. Now
we have

Wa(e,r, @) = / B (w"n(b), ) (— te(Th)) db

SymB(Qp)
5.1 _ r
G / (wv, (0™ n ()™ ()3 (— tr(T)) db
Sym3(Qp)
(4.3) 1 [r]
= (V) [ 9(5 by, 9))) - " (y) dy v (= tr(Tb)) db
Sym3(Qp) V2
‘ 1 .
—awim [ e - 1) - ) dy o
p~t Symy(Zp) \%
(5.1) . _ .
=" 7(V) Jim volay(p™* Symy(Z,)) - / P (y) dy
yeV?
3 (y,y)—Tep' Symy(Zp)Y
(5.2) : —(3/2)62p 6t
=" y(V) tllm 2 Pp dy.

YEMari4.3(Zp)
tySry—Tep' Symy(Zy)Y

Now {y € Mayy43(Zp) | 'ySry — T € p' Symy(Z,)Y } is a union of
Ap (T, Sr) := #{y € Mar143(Zp/20'Zy) | 'ySry — T € p' Symy(Zy)” }
cosets for 2p*Ma,44,3(Z,). Moreover, by the definition of dy (4.3) we have
volay(Map14,3(Zp)) = | det 25,]%/2
= | det 25,[3/2
= 275920 | det Sp[*/?,

and hence

VOldy(thM2T+4,3(Zp)) — 2—652p| det SO|3/22—3(4+27’)52pp-t3(4+2r)_
Therefore Wr (e, r, ®) is equal to
,y(v)2—652pl det SO‘3/22(—(3/2)—3(4+27‘))52p lim th—t3(4+2'r‘)Apt (T, Sr)

t—oo
Now we have
Ay (T, S,) = 2364+2%20 4 (T, S,)
with

Ap‘ (T,8:) = #{ y e M2r+4,3(Zp/pth) ' tysry -Te Pt Sym3(Zp)v }
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By definition we have

(T, 5,) = l.rgopet—t3(4+2r)Apt (T, S,)

t—

and this proves the proposition. O

Corollary 5.3. — For ® as in Proposition 5.2, Wr(e,0,®) # 0 if and only if T is
represented by Sp.

5.6. We will now prove Theorem 3.2.
As o, (T, Sy) is a rational function in X = p

-r

, it follows from Proposition 5.2 that
0
(5.3) Wr(e,0,®) = — 10g(p)2”<15/2)52"| det So|3/2”y(V)8—Xap(T, Sr)jx=1-

Let D be the division quaternion algebra over @@, and denote by Op its maximal
order. We denote by S = Sy (resp. S = Sp) the matrix associated to the quadratic
space V = My(Z,) (resp. V = Op) endowed with the reduced Norm. Then we have
(see e.g., [Wd1, (4.5) and (4.6)])

| det(So)| = 2%,
| det(So)| = 240 p~2.

Moreover we have by the explicit formulas in the Appendix of [Ku3]

(V) == (V).
Using the notation of Theorem 3.2, we therefore have by Proposition 5.2 and (5.3)

Wé",p(e’(l(bp) _ 36%aP(T7 Sr)|X=1

(5.4) =" (logp) ™" = p :
Wrp(e, 0, ®,) ap(T, So)
But now by [Wd2, Theorem 1.1 and 2.16] we have
(5.5) ap(T, So) =2(p+1)*p~!
and
9 40,2 2
(5.6) o (T Sr)ix=1 = —p"(p” = 1)"lg(O7.¢).

Therefore we have
55 Pt 2p+1)? grop(T,Sr)x=1
6 (P-12 p ap(T, So)
Ga) 2 Wi(e,0,9)

(P = 1)? Wr(e,0,®,)

1g(O7;.¢) log(p)

which proves the theorem.
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class of a lattice, 29

complex multiplication, 54, 97

coordinate of a lift, 92

cyclotomic case, 51, 53

deformation, 63, 88

Deuring’s lifting theorem, 97

Dieudonné module, 32

divisible Ok -module, 88

Eisenstein series, 194
incoherent, 194

elliptic curve, 1

equivalent lattices, 29

formal cohomology, 61

formal group, 87

formal group law, 49

formal moduli, 87, 92

formal modulus, 92

formal multiplicative group, 51, 53, 92, 93

formal Og-module, 49, 57, 68, 88
endomorphism ring, 68, 72
universal, 58

Frobenius element, 33

Gaussian, 194

genus, 28

Gross presentation of D resp. Op, 156

Gross—Keating invariants, 115, 134, 135, 183
for £ =2, 122, 123

— for £ # 2, 118
Hasse invariant, 183
height

— of formal Og-module, 60, 68
— of morphism of formal Og-modules, 60,
68
Hilbert symbol, 20, 183
ideal basis, 133, 133, 171
— is optimal, 135
intersection of modular divisors
over C, viii, 4
over Z, ix, 15
invariant €, 119, 127
for £ # 2, 119
isogeny
of elliptic curves, 1
of formal O -modules, 73
Kummer congruence, 150
local class field theory, 54, 75
Lubin-Tate module, 50
Lubin-Tate series, 50
mean value of representation, 44
Minkowski-Siegel formula, 44
modular intersection number, 175
modular polynomial, vii, 2
moduli space of isogenies of elliptic curves, 16,
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modulus, 79, 82
Newton polygon, 80
normal form for ternary quadratic forms over
Za, 120
normal lattice, 29
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O-lattice, 74
Og-module over R, 88
optimal basis, 115
— is ideal, 136
order
left — of a lattice, 29
right — of a lattice, 29
order in a quadratic extension, 76
proper class, 29, 38
properly equivalent, 29
quadratic form, 27
binary, 9, 16
quadratic space, 27
quasi-canonical lift, 76, 95
endomorphism ring, 107
homomorphisms between —, 171
quasicanonical locus of level s, 147
quaternion algebra, 29, 31
ramified, 30
split, 30
reciprocity law homomorphism, 54
reciprocity law homomorphism, 75
related
lattices, 28, 38
quadratic spaces, 28
representation density, ix, 23, 43, 181, 186,
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derivative, 189
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right ideal, 34
right ideal class, 34, 34
ring class field, 76
section

coherent, 198

incoherent, 195
Siegel Eisenstein series, 197
Siegel-Weil formula, 198
slope filtration, 80
stable range, 149
stack, 16
sublattice, 74
superlattice, 74
supersingular elliptic curve, 32, 34, 41
symmetric 2-cocycle, 61
Tate module, 32
Tate module, 73
theta integral, 198
theta series, 197
type of a divisible O g-module, 88
universal deformation, 65, 90
valuation of lift, 79
Weil representation

global, 193

local, 203
Whittaker function

local, 195, 204, 205



