@incollection{AST_2003__287__1_0,
author = {Dedieu, Jean-Pierre and Shub, Mike},
title = {On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$},
booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis},
editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
series = {Ast\'erisque},
pages = {1--18},
year = {2003},
publisher = {Soci\'et\'e math\'ematique de France},
number = {287},
mrnumber = {2039997},
zbl = {1213.37083},
language = {en},
url = {https://www.numdam.org/item/AST_2003__287__1_0/}
}
TY - CHAP
AU - Dedieu, Jean-Pierre
AU - Shub, Mike
TI - On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$
BT - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
AU - Collectif
ED - de Melo, Wellington
ED - Viana, Marcelo
ED - Yoccoz, Jean-Christophe
T3 - Astérisque
PY - 2003
SP - 1
EP - 18
IS - 287
PB - Société mathématique de France
UR - https://www.numdam.org/item/AST_2003__287__1_0/
LA - en
ID - AST_2003__287__1_0
ER -
%0 Book Section
%A Dedieu, Jean-Pierre
%A Shub, Mike
%T On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$
%B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis
%A Collectif
%E de Melo, Wellington
%E Viana, Marcelo
%E Yoccoz, Jean-Christophe
%S Astérisque
%D 2003
%P 1-18
%N 287
%I Société mathématique de France
%U https://www.numdam.org/item/AST_2003__287__1_0/
%G en
%F AST_2003__287__1_0
Dedieu, Jean-Pierre; Shub, Mike. On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$, dans Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 1-18. https://www.numdam.org/item/AST_2003__287__1_0/
[1] , , , Complexity and Real Computation, Springer, 1998. | MR | Zbl | DOI
[2] and Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, Vol. 8, Birkhauser, 1985. | MR | Zbl
[3] , , and , Recent Results about Stable Ergodicity, to appear in: Proceedings on Symposia in Pure Mathematics, the Seattle Conference of Smooth Ergodic Theory, AMS. | MR | Zbl
[4] and , Lyapunov Indices of a Product of Random Matrices, Russian Math. Surveys 44:5 (1989), pp. 11-71. | Zbl | DOI
[5] and , Propriétés de contraction d'un semi-groupe de matrices inversibles. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), pp. 165-196. | MR | Zbl | DOI
[6] , Positivity of the Exponent for Stationary Sequences of Matrices, in: Lyapunov Exponents, Proceedings, Bremen 1984, Arnold L. and V. Wihstutz Eds., Lectures Notes in Math. Vol. 1186. | Zbl
[7] , A Multiplicative Ergodic Theorern. Lyapunov Characteristic Numbers for Dynamical Systems, Trans. Moscow Math. Soc., 19, (1968), pp. 197-231. | Zbl | MR
[8] , Ergodic Theory of Differentiable Dynamical Systems, Publications Mathématiques de l'IHES, Volume 50, (1979), pp. 27-58. | MR | Zbl | EuDML | Numdam | DOI
[9] and , Some Linearly Induced Morse-Smale Systems, the Algorithm and the Toda Lattice, in: The Legacy of Sonia Kovalevskaya, Linda Keen Ed., Contemporary Mathematics, Vol. 64, AMS, (1987), pp. 181-193. | MR | Zbl | DOI







