@incollection{AST_2003__286__1_0,
author = {Newhouse, Sheldon},
title = {On the mathematical contributions of {Jacob} {Palis}},
booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
series = {Ast\'erisque},
pages = {1--24},
year = {2003},
publisher = {Soci\'et\'e math\'ematique de France},
number = {286},
mrnumber = {2052295},
zbl = {1047.37019},
language = {en},
url = {https://www.numdam.org/item/AST_2003__286__1_0/}
}
TY - CHAP AU - Newhouse, Sheldon TI - On the mathematical contributions of Jacob Palis BT - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 1 EP - 24 IS - 286 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2003__286__1_0/ LA - en ID - AST_2003__286__1_0 ER -
%0 Book Section %A Newhouse, Sheldon %T On the mathematical contributions of Jacob Palis %B Geometric methods in dynamics (I) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 1-24 %N 286 %I Société mathématique de France %U https://www.numdam.org/item/AST_2003__286__1_0/ %G en %F AST_2003__286__1_0
Newhouse, Sheldon. On the mathematical contributions of Jacob Palis, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), pp. 1-24. https://www.numdam.org/item/AST_2003__286__1_0/
[1] , , and . measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math., 140(2),351-398, 2000. | MR | Zbl | DOI
[2] and . Systèmes grossiers. Dokl. Akad. Nauk. USSR, 14, 247-251, 1937. | JFM | Zbl
[3] . Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov., 90, 209, 1967. | MR | Zbl
[4] and . The dynamics of the Hénon map. Ann. of Math. (2), 133(1), 73-169, 1991. | MR | Zbl | DOI
[5] , , and . A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Preprint, 1999. | MR | Zbl
[6] . On one-parameter families of diffeomorphisms. II. Generic branching in higher dimensions. Comment. Math. Univ. Carolinae, 12, 765-784, 1971. | MR | Zbl | EuDML
[7] , , and . The topology of holomorphic flows with singularity. Inst. Hautes Études Sci. Publ. Math., 48, 5-38, 1978. | MR | Zbl | EuDML | Numdam | DOI
[8] and . Bifurcations and global stability of families of gradients. Inst. Hautes Études Sci. Publ. Math., 70, 103-168, 1989. | MR | Zbl | EuDML | Numdam | DOI
[9] and . Moduli of stability for diffeomorphisms. In Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pages 318-339. Springer, Berlin, 1980. | MR | Zbl | DOI
[10] , , and . Characterising diffeomorphisms with modulus of stability one. In Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pages 266-285. Springer, Berlin, 1981. | MR | Zbl | DOI
[11] . Robust nonhyperbolic dynamics and heterodimensional cycles. Ergodic Theory Dynam. Systems, 15(2), 291-315, 1995. | MR | Zbl
[12] , , and . Partial hyperbolicity and robust transitivity. Acta Math., 183(1), 1-43, 1999. | MR | Zbl | DOI
[13] and . Large measure of hyperbolic dynamics when unfolding heteroclinic cycles. Nonlinearity, 10(4), 857-884, 1997. | MR | Zbl | DOI
[14] . Time dependent stable diffeomorphisms. Invent. Math., 24, 163-172, 1974. | MR | Zbl | EuDML | DOI
[15] and . Three-dimensional dynamical systems that are close to systems with a structurally unstable homoclinic curve. I. Mat. Sb. (N.S.), 88(130), 475-492, 1972. | MR | Zbl | EuDML
[16] . Absolutely -stable diffeomorphisms. Topology, 11, 195-197, 1972. | MR | Zbl | DOI
[17] and . Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math., 50, 59-72, 1979. | MR | Zbl | EuDML | Numdam | DOI
[18] . Structural stability for flows on the torus with a cross-cap. Trans. Amer.Math. Soc., 241, 311-320, 1978. | MR | Zbl | DOI
[19] . Connecting invariant manifolds and the solution of the stability and -stability conjectures for flows. Ann. of Math. (2), 145(1), 81-137, 1997. | MR | Zbl | DOI
[20] . Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., 81(1), 39-88, 1981. | MR | Zbl | DOI
[21] . On the stability conjecture. Chinese Ann. Math., 1(1), 9-30, 1980. | MR | Zbl
[22] . Almost every real quadratic map is either regular or stochastic. Annals of Math. To appear. | MR | Zbl
[23] . Contributions to the stability conjecture. Topology, 17(4), 383-396, 1978. | MR | Zbl | DOI
[24] . An ergodic closing lemma. Ann. of Math. (2), 116(3), 503-540, 1982. | MR | Zbl | DOI
[25] . A proof of the stability conjecture. Inst. Hautes Études Sci. Publ. Math., 66, 161-210, 1988. | MR | Zbl | EuDML | Numdam | DOI
[26] . Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4, 257-302, 1954. | MR | Zbl | DOI
[27] and . Abundance of strange attractors. Acta Math., 171(1), 1-71, 1993. | MR | Zbl | DOI
[28] , , and . Robust transitive singular sets for 3-flows are partially hyperbolic attractors and repellers. Preprint, 1999. | MR | Zbl
[29] , , and . On robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Sér. I Math., 326(1), 81-86, 1998. | MR | Zbl | DOI
[30] and . Stable intersections of regular Cantor sets with large Hausdorff dimension. Preprint 1998. | Zbl | MR
[31] and . Tangences homoclines stables pour les ensembles hyperboliques de grande dimension fractale. Preprint 2000. | MR | Zbl | Numdam
[32] . Nondensity of Axiom on . In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 191-202. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl
[33] . Diffeomorphisms with infinitely many sinks. Topology, 13, 9-18, 1974. | MR | Zbl | DOI
[34] . The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 50, 101-151, 1979. | MR | Zbl | EuDML | Numdam | DOI
[35] and . Bifurcations of Morse-Smale dynamical systems. In Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 303-366, New York, 1973. Academic Press. | MR | Zbl
[36] and . Cycles and bifurcation theory. Astérisque, 31, 43-140, 1976. | MR | Zbl | Numdam
[37] , , and . Bifurcations and stability of families of diffeomorphisms. Inst. Hautes Etudes Sci. Publ. Math., 57, 5-71, 1983. | MR | Zbl | EuDML | Numdam | DOI
[38] . On Morse-Smale dynamical systems. Topology, 8, 385-404, 1968. | MR | Zbl | DOI
[39] . Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc., 80, 503-505, 1974. | MR | Zbl | DOI
[40] . A differentiable invariant of topological conjugacies and moduli of stability. Astérisque, 51, 335-346, 1978. | MR | Zbl | Numdam
[41] . A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque, 261, XIII-XIV, 335-347, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995). | MR | Zbl | Numdam
[42] and . Structural stability theorems. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 223-231. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl
[43] and . Stability of parametrized families of gradient vector fields. Ann. of Math. (2), 118(3), 383-421, 1983. | MR | Zbl | DOI
[44] and . Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Invent. Math., 82(3), 397-422, 1985. | MR | Zbl | EuDML | DOI
[45] and . Hyperbolicity and the creation of homoclinic orbits. Ann. of Math. (2), 125(2), 337-374, 1987. | MR | Zbl | DOI
[46] and . Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993. | MR | Zbl
[47] and . High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. of Math. (2), 140(1), 207-250, 1994. | MR | Zbl | DOI
[48] and . Centralizers of Anosov diffeomorphisms on tori. Ann. Sci. École Norm. Sup. (4), 22(1), 99-108, 1989. | MR | Zbl | EuDML | Numdam | DOI
[49] and . Rigidity of centralizers of diffeomorphisms. Ann. Sci. École Norm. Sup. (4), 22(1), 81-98, 1989. | MR | Zbl | EuDML | Numdam | DOI
[50] and . Differentiable conjugacies of Morse-Smale diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.), 20(2), 25-48, 1990. | MR | Zbl | DOI
[51] and . Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension. Acta Math., 172(1), 91-136, 1994. | MR | Zbl | DOI
[52] and . Nonuniformily hyperbolic horseshoes unleashed by homoclinic bifurcations and zero density of attractors. C. R. Ac. Sc. Paris, 2000. To appear. | MR | Zbl
[53] . On structural stability. Ann. of Math. (2), 69, 199-222, 1959. | MR | Zbl | DOI
[54] . Structural stability on two dimensional manifolds. Topology, 1, 101-120, 1962. | MR | Zbl | DOI
[55] . Analysis of the necessity of the conditions of Smale and Robbin for structural stability for periodic systems of differential equations. Differencial'nye Uravnenija, 8, 972-983, 1972. | MR | Zbl
[56] . The closing lemma. Amer. J. Math., 89, 956-1009, 1967. | MR | Zbl | DOI
[57] and . The -stability theorem for flows. Invent. Math., 11, 150-158, 1970. | MR | Zbl | EuDML | DOI
[58] and . Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis. Annals of Math., 2000. To appear. | MR | Zbl | EuDML
[59] and . On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and varation of entropy. Nonlinearity, 13(3), 921-926, 2000. | MR | Zbl | DOI
[60] . A structural stability theorem. Ann. of Math. (2), 94, 447-493, 1971. | MR | Zbl | DOI
[61] . Structural stability of vector fields. Ann. of Math. (2), 99, 154-175. 1974. | MR | Zbl | DOI
[62] . Structural stability of diffeomorphisms. J. Differential Equations, 22(1), 28-73, 1976. | MR | Zbl | DOI
[63] . Bifurcation to infinitely many sinks. Comm. Math. Phys., 90(3), 433-459, 1983. | MR | Zbl | DOI
[64] . The stability theorems for discrete dynamical systems on two-dimensional manifolds. Nagoya Math. J., 90, 1-55, 1983. | MR | Zbl | DOI
[65] . Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-817, 1967. | MR | Zbl | DOI
[66] . Generic one-parameter families of vector fields on two-dimensional manifolds. Inst Hautes Études Sci. Publ. Math., 43, 5-46, 1974. | MR | Zbl | EuDML | Numdam | DOI
[67] . Stabilité structurelle et morphogénèse. W. A. Benjamin, Inc., Reading, Mass., 1972. Essai d'une théorie générale des modèles, Mathematical Physics Monograph Series. | MR | Zbl
[68] . The "DA" maps of Smale and structural stability. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 329-334. Amer. Math. Soc., Providence, R.I., 1970. | MR | Zbl







