@incollection{AST_1993__217__119_0,
author = {Hanges, Nicholas and Treves, Fran\c{c}ois},
title = {On the local holomorphic extension of $CR$ functions},
booktitle = {Colloque d'analyse complexe et g\'eom\'etrie - Marseille, janvier 1992},
series = {Ast\'erisque},
pages = {119--137},
year = {1993},
publisher = {Soci\'et\'e math\'ematique de France},
number = {217},
language = {en},
url = {https://www.numdam.org/item/AST_1993__217__119_0/}
}
TY - CHAP AU - Hanges, Nicholas AU - Treves, François TI - On the local holomorphic extension of $CR$ functions BT - Colloque d'analyse complexe et géométrie - Marseille, janvier 1992 AU - Collectif T3 - Astérisque PY - 1993 SP - 119 EP - 137 IS - 217 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1993__217__119_0/ LA - en ID - AST_1993__217__119_0 ER -
%0 Book Section %A Hanges, Nicholas %A Treves, François %T On the local holomorphic extension of $CR$ functions %B Colloque d'analyse complexe et géométrie - Marseille, janvier 1992 %A Collectif %S Astérisque %D 1993 %P 119-137 %N 217 %I Société mathématique de France %U https://www.numdam.org/item/AST_1993__217__119_0/ %G en %F AST_1993__217__119_0
Hanges, Nicholas; Treves, François. On the local holomorphic extension of $CR$ functions, dans Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque, no. 217 (1993), pp. 119-137. https://www.numdam.org/item/AST_1993__217__119_0/
1. and , [1] Complex characteristic coordinates and tangential Cauchy-Riemann equations, Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 299-324.
2. , and , [1] On the analyticity of mappings, Ann. of Math. 122 (1985), 365-400.
3. and , [1] Cauchy-Riemann functions on manifolds of higher codimension in complex space, Invent. Math. 101 (1990), 45-56.
4. and , [2] Minimality and the extension of functions from generic manifolds, preprint.
5. and , [3] A generalized complex Hopf lemma and its applications to CR mappings, preprint.
6. and , [1] A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Annals of Math. 113 (1981), 387-421.
7. and , [2] About the holomorphic extension of functions on real hypersurfaces in complex space, Duke Math. J. 51 (1984), 77-107.
8. and , [1] Local extension of -functions from weakly pseudoconvex boundaries, Michigan Math. J. 25 (1978), 259-262.
9. and , [1] extension near a point of higher type, Duke Math. J. 52 (1985), 67-102.
10. and , [1] Local holomorphic extendability and non-extendability of -functions on smooth boundaries, Ann. Scuola Norm. Sup. Pisa Sci. XII (1985), 491-502.
11. , [1] Introduction to Potential Theory, Wiley-Interscience 1969.
12. and , [1] A pseudoconvex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268.
13. , [1] Sulle ipersuperfici dello spazio a dimensioni che possono essere frontiera del campo di esistenza di une funzione analitica di due variabili complesse, Ann. Mat. Pura Appl. 18 (1911), 69-79.
14. , [1] On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann of Math. 74 (1956), 514-522.
15. , Ph. D. Thesis, Princeton University (1985).
16. , [1] Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
17. , [1] Sur le prolongement holomorphe des fonctions définies sur une hypersurface réelle de classe dans , Invent. Math. 83 (1986), 583-592.
18. , [1] Hypo-analytic structures. Local theory, Princeton University Press, Princeton, N.J. (1992).
19. , Extension of functions into a wedge from a manifold of finite type, Mat. Sbornik 136 (1988), 128-139 (Russian)
19. , Extension of functions into a wedge from a manifold of finite type, English translation in USSR Sbornik 64 (1989), 129-140.







