@incollection{AST_1988__157-158__59_0,
author = {Burdzy, Krzysztof and Pitman, Jim W. and Yor, Marc},
title = {Some asymptotic laws for crossings and excursions},
booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
series = {Ast\'erisque},
pages = {59--74},
year = {1988},
publisher = {Soci\'et\'e math\'ematique de France},
number = {157-158},
zbl = {0666.60070},
language = {en},
url = {https://www.numdam.org/item/AST_1988__157-158__59_0/}
}
TY - CHAP AU - Burdzy, Krzysztof AU - Pitman, Jim W. AU - Yor, Marc TI - Some asymptotic laws for crossings and excursions BT - Colloque Paul Lévy sur les processus stochastiques AU - Collectif T3 - Astérisque PY - 1988 SP - 59 EP - 74 IS - 157-158 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1988__157-158__59_0/ LA - en ID - AST_1988__157-158__59_0 ER -
%0 Book Section %A Burdzy, Krzysztof %A Pitman, Jim W. %A Yor, Marc %T Some asymptotic laws for crossings and excursions %B Colloque Paul Lévy sur les processus stochastiques %A Collectif %S Astérisque %D 1988 %P 59-74 %N 157-158 %I Société mathématique de France %U https://www.numdam.org/item/AST_1988__157-158__59_0/ %G en %F AST_1988__157-158__59_0
Burdzy, Krzysztof; Pitman, Jim W.; Yor, Marc. Some asymptotic laws for crossings and excursions, dans Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 59-74. https://www.numdam.org/item/AST_1988__157-158__59_0/
, and (1967). Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrscheinlichkeitstheorie 8, 157-181. | Zbl | DOI
, and (1969). Propriétés relatives des processus de Markov récurrents. Z. Wahrscheinlichkeitstheorie 13, 286-314. | Zbl | DOI
(1971). Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitstheorie 17, 1-22. | Zbl | DOI
and (1968). Markov processes and potential theory. Academic Press. | Zbl
, and (1987) Some asymptotic laws for crossings and excursions. Technical Report No. 112. Dept. Statistics, U. C. Berkeley.
(1973). Probabilistic approach in potential theory to the equilibrium problem. Ann. Inst. Fourier, Grenoble. 23, 3, 313-322 | EuDML | Zbl | Numdam | DOI
(1967). Conformal mapping on Riemann surfaces. Dover, New York. | Zbl
and (1957). Occupation times for Markov processes. Trans. Amer. Math. Soc. 84, 444-458. | Zbl | DOI
(1987). On the excursions of Markov processes in classical duality. Prob. Rel. Fields 15, 159-178 | Zbl | DOI
and (1973). Remarks on Palm measures. Ann. Inst. Henri Poincaré Sec B, IX 213-232. | Zbl | Numdam
and (1973). Last exit decompositions and distributions. Indiana Univ. Math. J. 23, 377-404. | Zbl | DOI
and (1982). Excursions of Dual processes. Adv. in Math. 45, 259-309 | Zbl | DOI
and (1986). Capacity theory without duality. Prob. Rel Fields 73, 3 415-446 | Zbl | DOI
and (1980a). Construction of local time and Poisson point processes from nested arrays. J. London Math. Soc. (2) 22, 182-192. | Zbl | DOI
(1970). Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp. Math. Statist. Prob. pp. 225-239. Univ. of California Press, Berkeley. | Zbl
and (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin. | Zbl
and (1953). Ergodic property of the Brownian motion process. Proc. Nat. Acad. Sci. U.S.A. 39, 525-533. | Zbl | DOI
(1977). Limit theorems of occupation times for Markov processes. Publ. Res. Inst. Math. Sci. Kyoto 12, 801-808. | Zbl | DOI
(1982). A Limit Theorem for Slowly Increasing Occupation Times. Ann. Prob. 10, 728-736. | Zbl | DOI
and (1979). On Limit Processes for a Class of Additive Functionals of Recurrent Diffusion Processes. Z. Wahrscheinlichkeitstheorie 49, 133-153. | Zbl | DOI
(1984). On invariant measures and dual excursions of Markov processes. Z. Wahrscheinlichkeitstheorie 66, 185-204. | Zbl | DOI
(1985). Excursion laws for Markov processes in classical duality. Ann. Prob. 13, 492-518. | Zbl | DOI
(1929). Foundations of potential theory. Springer, Berlin. | JFM | EuDML | DOI
and (1986). Etude asymptotique de certains mouvements browniens complexes avec drift. Probability and Related Fields, 71, 183-229 | Zbl | DOI
and (1984). Windings of the plane Brownian motion. Adv. in Math. 51, 212-225. | Zbl | DOI
(1975). Exit systems. Ann. Prob. 3, 399-411. | Zbl | DOI
and (1959). Ergodic property of N-dimensional recurrent Markov processes. Memoirs of Fac. Science, Kyushu Univ. Ser. A 13, 157-172. | Zbl
(1965). A probabilistic interpretation of equilibrium charge distributions. J. Math. Kyoto Univ. 4, 617-625. | Zbl | DOI
(1984). Exit systems for dual Markov processes. Z. Wahrscheinlichkeitstheorie 66, 259-267. | Zbl | DOI
and (1953). Methods of Theoretical Physics. Vol. 2. McGraw Hill. | Zbl
(1987). The asymptotic distribution of the number of crossings between tangential circles by planar Brownian motion. Preprint. | Zbl
(1968). Sur la structure des processus ponctuels stationnaires. C. R. Acad. Sci, t 267, A p. 561. | Zbl
(1976). Sur les mesures de Palm de deux processus ponctuels stationnaires. Z. Wahrscheinlichkeitstheorie verw. Geb. 34, 199-203. | Zbl | DOI
(1977). Processus ponctuels. Ecole d'Eté de Probabilités de Saint-Flour VI-1976. 250-446. Lecture Notes in Math. 598. Springer. | Zbl
(1987). Stationary Excursions. Séminaire de Probabilités XXI, 289-302. Lecture Notes in Math. 1247. Springer-Verlag, Berlin. | Zbl | EuDML | Numdam | DOI
and (1986a). Asymptotic laws of planar Brownian motion. Ann. Prob. 14, 733-779. | Zbl | DOI
and (1986b). Level crossings of a Cauchy process. Ann. Prob. 14, 780-792. | Zbl | DOI
and (1986c). Some Divergent Integrals of Brownian Motion. Analytic and Geometric Stochastics : Supplement to Adv. Appl. Prob., Applied Prob. Trust, 109-116. | Zbl
and (1987). Further asymptotic laws of planar Brownian motion. Technical Report No. 78, Dept. Statistics, U. C. Berkeley. To appear in Ann. Prob. | Zbl
(1975). Markov Chains. North Holland, New York. | Zbl
(1988). Théorèmes limites pour les processus de Markov récurrents. To appear in Prob. Theory and Rel. Fields. | Zbl
(1960). On recurrent Markov processes. Kodai Math. Sens. Rep. 12, 109-142. | Zbl | DOI







