@incollection{AST_1985__132__277_0,
author = {Li, Peter},
title = {Function theory on complete {Riemannian} manifolds},
booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)},
series = {Ast\'erisque},
pages = {277--284},
year = {1985},
publisher = {Soci\'et\'e math\'ematique de France},
number = {132},
mrnumber = {816772},
zbl = {0575.53023},
language = {en},
url = {https://www.numdam.org/item/AST_1985__132__277_0/}
}
TY - CHAP AU - Li, Peter TI - Function theory on complete Riemannian manifolds BT - Colloque en l'honneur de Laurent Schwartz (Volume 2) AU - Collectif T3 - Astérisque PY - 1985 SP - 277 EP - 284 IS - 132 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1985__132__277_0/ LA - en ID - AST_1985__132__277_0 ER -
%0 Book Section %A Li, Peter %T Function theory on complete Riemannian manifolds %B Colloque en l'honneur de Laurent Schwartz (Volume 2) %A Collectif %S Astérisque %D 1985 %P 277-284 %N 132 %I Société mathématique de France %U https://www.numdam.org/item/AST_1985__132__277_0/ %G en %F AST_1985__132__277_0
Li, Peter. Function theory on complete Riemannian manifolds, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 277-284. https://www.numdam.org/item/AST_1985__132__277_0/
[1] ; Behavior of diffusion semi-group at infinity, Bull. Soc. Math France 102 (1974), 193-240. | MR | Zbl | EuDML | Numdam
[2] ; Existence of harmonic functions in complete Riemannian manifolds, unpublished. | Zbl
[3] ; Maximum principle for parabolic inequalities and the heat flow on open manifolds, preprint. | MR | Zbl
[4] ; Foliations, the ergodic theorem and brownian motion, preprint. | Zbl | MR | DOI
[5] and ; Integrals of subharmonic functions on manifolds of nonnegative curvature. Invent. Math. 27 (1974), 265-298. | MR | Zbl | EuDML | DOI
[6] and ; "Diffusion processes and applications", North-Holland, Amsterdam (1981). | MR
[7] and ; The heat equation on complete Riemannian manifolds, preprint.
[8] and ; and mean value properties of subharmonic functions on Riemannian manifolds, preprint. | MR | Zbl
[9] ; Contraction semi-groups for diffusion with drift, preprint. | MR | Zbl
[10] ; Analysis of the Laplacian on a complete Riemannian manifold, preprint. | Zbl | DOI
[11] ; Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. | MR | Zbl | DOI
[12] ; Some function-theoretic properties of complete Riemannian manifolds and their application to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. | MR | Zbl | DOI
[13] ; On the heat kernel of a complete Riemannian manifold, J. Math. Pure et Appl. 57 (1978), 191-201. | MR | Zbl







