@incollection{AST_1984__113-114__198_0,
author = {Halperin, Stephen},
title = {Spaces whose rational homology and de {Rham} homotopy are both finite dimensional},
booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
series = {Ast\'erisque},
pages = {198--205},
year = {1984},
publisher = {Soci\'et\'e math\'ematique de France},
number = {113-114},
zbl = {0546.55015},
mrnumber = {749058},
language = {en},
url = {https://www.numdam.org/item/AST_1984__113-114__198_0/}
}
TY - CHAP AU - Halperin, Stephen TI - Spaces whose rational homology and de Rham homotopy are both finite dimensional BT - Homotopie algébrique et algèbre locale AU - Collectif T3 - Astérisque PY - 1984 SP - 198 EP - 205 IS - 113-114 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1984__113-114__198_0/ LA - en ID - AST_1984__113-114__198_0 ER -
%0 Book Section %A Halperin, Stephen %T Spaces whose rational homology and de Rham homotopy are both finite dimensional %B Homotopie algébrique et algèbre locale %A Collectif %S Astérisque %D 1984 %P 198-205 %N 113-114 %I Société mathématique de France %U https://www.numdam.org/item/AST_1984__113-114__198_0/ %G en %F AST_1984__113-114__198_0
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205. https://www.numdam.org/item/AST_1984__113-114__198_0/
[1] and Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | Zbl | MR | EuDML | DOI
[2] . Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | MR | Zbl | DOI
[3] . Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | MR | Zbl | DOI
[4] , Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | DOI | MR | Zbl | EuDML | Numdam







