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UNE DEMONSTRATION GEOMETRIQUE D'UN THEOREME DE LYAPUNOV-POINCARE.

par R. Moussu.

1. Introduction. Le but essentiel de ce travail est de démontrer géomé-
triquement le "théoréme du centre" attribué a Poincaré [5] dans la lit-
térature occidentale et a Lyapunov [3] dans la littérature russe. Ensui-
te, nous montrons, a l'aide d'un contre exemple, qu'un centre ne posséde

pas nécessairement une intégrale premiere.

Avant de rappeler son énoncé, précisons quelques notations et quel-
ques définitions. L'anneau des séries convergentes a deux indéterminées
X,y sur R (respectivement sur €) est noté R{x,y} (respectivement €{x,y}).
Si

f = 2z fa 8 x® yB
a,B ’
est un élément de R{x,y} nous écrivons aussi
f = I fa 8 x® yB + e ’
a+B<v ’

les 3 petits points désignant évidemment des termes d'ordre > v. Dans

toute la suite nous notons
w = a dx + b dy

le germe en 0 € R2 d'une l1-forme différentielle, analytique, i.e.

a,b € R{x,y}. I1 est dit a singularité algébriquement isolée si -le
quotient de R{x,y} par 1'idéal engendré par a et b est un R-espace vec-
toriel de dimension finie. Un élément f de R{x,y} est une intégrale pre-
miére fonte de w s'il existe g € R{x,y} tel que

w =g df

Le point 0 est dit un "centre" pour w s'il existe un voisinage U de 0
dans R? tel que les courbes intégrales de w/U-{0O}soient homéomorphes a
des cercles. Enfin nous notons

w, = Z aa,B dx + ba,B dy

v a+B<LVv
le jet d'ordre V de w en 0.

Théoréme du centre :Soit w = a dx + b dy un germe en 0 eIRZ de 1-forme

analytique tel que 0 soit
i) une singularité isolée de Wy
ii) un centre pour Ww.

Alors W posséde une intégrale premiére forte qui est un germe de fonction

de Morse de signe constant.
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THEOREME DE LYAPUNOV-POINCARE

Comme nous le verrons dans dans le paragraphe suivant, il est tres
facile de déduire des hypotheéses i) et ii) que :

i) w; est la différentielle d'une forme quadratique définie de
signe constant.

I1 est clair que la réunion des hypothéses i) , ii) est équivalen-

te a celle de i') , ii) et que i') se généralise de la fagon suivante :

iii) le premier jet non nul w, de w en 0 est la différentielle
d'un polynome (naturellement homogéne de degré v+1) de signe constant
dont 0 est une singularité isolée.

On pourrait penser qu'un germe w qui vérifie ii) et iii) possede
une intégrale premiere forte. Or nous verrons dans le paragraphe 5 que
1 22
2%

vérifie ii) et iii) mais n'a pas d'intégrale premieére forte.

w = % d(xl+ + yu) - dx

1. Application retour et argument de la démonstration de Poincaré. Mon-

trons tout d'abord que i') est une conséquence de i) et ii). Soit Xl
le champ de vecteurs tel que

1X1
Il est bien connu (voir [6] ) que, si les valeurs propres du champ li-

dx a dy = wy o -

néaire X, ont une partie réelle non nulle , Xl est de 1'un des types
noeud - foyer - selle. Dans ces trois cas 1l'une au moins des courbes
intégrales non singuliéres de w contient 0 dans son adhérence. Les va-

leurs propres de X, sont donc imaginaires pures ; i') s'en déduit immédiate-

1
ment. Ainsi,en faisant un changement linéaire de coordonnées,on écrit w

sous la forme
(1) w = (x+...)dx + (y+...)dy .

I1 existe un voisinage de 0 sur lequel les courbes intégrales (non sin-

guliéres) de w sont transverses au champ radial R = x ;; +y ;; puisque
w(R) = x2 + y2 + e
Ainsi, dans des coordonnées polaires (r,0) , 1'équation de la courbe

intégrale qui passe par le point (r,0) s'écrit :
o(8) = + a,(8) r% 4+ ...

Le difgéomorphisme premier retour correspondant a w est l'application
h : r~> h(r) = p(2m).

La démonstration de Poincaré consiste a montrer , voir [1] , que l'hy-

potheése
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ii)n les ak(e) sont périodiques de période 27 pour k < n
est équivalente (lorsque w = x dx + y dy + ...) a
ii')n il existe des polynomes homogeénes Pk de degré k pour
k = 3,4,...,2n tels que
w oA df = (Cn(x2+y2)n+...) dx A dy , ou

f = x2+y2+P

n +...+P2

3

Il est clair que 1l'application premier retour h est l'identité si ii)

n

est vrai et qu'alors les ak(e) sont tous périodiques. Par induction, on

construit ainsi une série formelle

f=x +y + P3 + e

telle que wAdf = 0. Le lemme de division de G. De Rham [2] permet
alors d'affirmer que f est une intégrale premiére forte formelle de w.
Mais il reste encore a montrer (pour obtenir le résultat énoncé) que
les Pn peuvent-étre choisis de telle fagon que f converge ! Ceci est
une conséquence du théoréme A page 472 de [ 4] . Nous démontrons direc-
tement et géométriquement l'existence d'un tel f dans le paragraphe &4.
Mais, auparavant, dans le paragraphe suivant nous allons présenter dans

le cadre qui nous intéresse un résultat de [4].

3. Existence de variétés invariantes et d'intégrales premiéres. Dans

tout ce paragraphe et en particulier dans 1'énoncé des propositions 1
et 2, @ désigne un germe en 0 € ¢% de 1-forme différentielle holomorphe

dont le jet d'ordre 1 en 0 s'écrit
(2) Q; =pydx + g x dy

ou p et q sont deux entiers positifs premiers entre eux. Un germe de
sous variété holomorphe de ¢? qui contient 0 et qui est une variété

intégrale de @ s'appelle une variété Linvariante de Q ; rappelons la

Proposition 1. (Poincaré) Q posséde deux variétés invariantes Lo »

Lé dont les équations sont du type
Y=y + ... =0 et X=x+ ... =0

Ainsi il existe de nouvelles coordonnées notées encore (x,y) telles
que
Q =p y(l+...)dx + g x(1+...) dy

La droite complexe y = 0 privée de 0 est une feuille, notée encore Lo’
du feuilletage QfQ(sans singularité) défini par la restriction de  a
CZ - {0} . L'hoLonomie de cette feuille est définie de la fagon sui-
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THEOREME DE LYAPUNOV-POINCARE

vante : pour r > 0 et y € ¢ petits,le lacet (dans Lo)

r, 6 » (r 210 0y . eel0,1]

se releve,suivant la projection (x,y) - x, dans la feuille Ly de 579
passant par le point (r,y) en le chemin

I :6+ (r 2170 , Y(y,0)) , y(y,0) =y

y
Le difféomorphisme d'holonomie qui correspond a Fo est la série entie-

re en y
hpy =y > hiy) = v(y,1)
0
Un calcul élémentaire (voir [4] page 480) montre que
2imp
hp (y) = e q y + ...
o

Nous dirons que 1'holLonomie de L ~est périodique si hp est périodi-

que de période q. °

Proposition 2. ([4] page 482). L'holonomie de L0 est périodique si et
seulement si  posseéde une intégrale premiere du type xPy9 od

Y=y +...=0 et X=x4+ ...=0

sont des équations des variétés invariantes L, et L' .

Ce résultat est démontré avec des hypothéses moins restrictives
dans [4] . Dans le cadre qui nous intéresse on peut le montrer plus
facilement de la fagon suivante. On déduit rapidement de la périodi-

cité de hp  que Q(aDr xD ) ou ry;,r, € R* posséde une intégrale premiére

0 1
f: (r,,y) » rP.y9.u(r,,y), ot u |0,0]= 1.
1’ 1 IR ’
L'application F de (D_ -{0})xD dans € définie par : F(x,y)=f(r,,y,) si
l'l l’z 1 1

la variété intégrale de Q passant (x,y) coupe 3D, %D en (rl,yl) est
2

bien définie, holomorphe. Par construction, elle est constante sur les

variétés intégrales de Q/((Dr - {O})xDr ) et puisqu'elle est bornée

elle s'étend en une intégralelpremiére éesU(Dr xD_ ).
1 2

4. Démonstration du théoréme du centre. Nous allons voir que ce théo-

reme est une conséquence immédiate des propositions précédentes en
éclatant le 0 € €2, Rappelons briévement cette technique. L'éclaté en

0 de @2 est le fibré canonique en droites complexes sur PC(1l) noté

v2 . . . 2 N2
p: € > PC(l). Si (x,y) sont les coordonnées des points de C~, € est
défini par les deux cartes
(t,x) : EZ - p-l(m) > CZ
(s,y) & - p'l(o) > ¢? avec s = 1 , ¥ = tx.

t
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~
L'application d'éclatement , m: ¢2 > ¢2, et la projection p s'écrivent

respectivement dans ces cartes ¢

m o (t,x) > (x,tx) , (s,y) » (sy,y)
(t,x) >t y (s,y) » s

Soit w qui vérifie les hypothéses i) et ii) du théoréme. Notons
2

le germe en 0 € €~ de 1-forme holomorphe obtenue en complexifiant w
I1 existe des coordonnées (x,y) de ¢2 dans lesquelles
Q = (x+...)dx + (y+...)dy.

Dans les cartes (t,x) et (s,y) de &2 on pose

*( ~ ~
T (Q) = x 0y =¥ 9

avec
5; = ((1+t2)+x(...))dx + xdt(t+x(...))
6m = ((l+52)+y(...))dy + yds(s+y(...))

ou les ... désignent des fonctions holomorphes sur les domaines de dé-
finition des cartes correspondantes. Soient I et I' les points de
PC(1) c 62 de coordonnées (i,0) et (-i,0) dans la carte (t,x). Les
formes 5m et 5; définissent sur EZ - I vul' un feuilletage sans singu-
larité dont

U =pPe(1) - Iyl

Y ~

est une feuille. Pour étudier 3% au voisinage du point I, posons

t =u + i. On a dans la carte (u,x)
50 = (2iu + u2 + X(...))dx + x du (i+u+x(...))

Modulo un changement u » u + ax son jet d'ordre 1 en I vérifie (2),avec
(p,q) = (2,1). Admettons provisoirement que la condition nécessaire de

la proposition 2 soit vérifiée , i.e

~r

Affirmation : L'holonomie de la variété invariante L, est périodique

de période 2.

Le germe de 5; possede une intégrale premiére du type U.x% ou
~
U(u,x) € C{u,x} est une équation de la deuxiéme variété invariante L',

4 s e . 2
de Qo' La restriction dem a €

- PC(1) étant un difféomorphisme holo-
morphe sur ¢ - {0} y L'y = N(Eg) est une variété intégrale de Q qui
posséde la méme holonomie que Lé. D'aprés la condition suffisante de
la proposition 2, cette holonomie est périodique de période 1, i.e
c'est 1l'identité.

Dans les coordonnées (x' = x + iy, y' = x - iy) le jet d'ordre 1

de Q s'écrit
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o, = % (x' dy' + y' dx')
D'aprés la proposition 1, Q posséde deux variétés invariantes Ly »
tangente a y' = 0, et une seconde qui est nécessairement L'o , tan-
gente a x' = 0. Les hypothéses de la proposition 2 sont vérifiées et

Q posseéde une intégrale premiere du type
F o= (x'" +...)(y" + ...)

Dans les coordonnées (x,y) elle s'écrit

F = x2 + y2

La partie réelle f € R{x,y} de F vérifie

w ~df =0 ) f=x" +y +
puisque w = QﬂRz et Q@ AdF = 0. La conclusion du théoréme est alors une
conséquence du lemme de division de G. De Rahm [2]

A - ~
Démonstration de l1'affirmation .La "partie réelle" de CZ, T lGRZ)z RZ

~N
ou ch EZ est la bande Moébus , c'est a dire le fibré canonique en

droite réelle sur

sl - PR(1) ¢ PC(1)

La classe d'homotopie du plongement canonique de PR(1l) dans

to = PC(1l) - I y I' est un générateur de son groupe fondamental.

D'autre part la restriction de 7 a

R% - PR(1) = n T®?% -{0})

2

est un difféomorphisme sur R® -{0} . Les courbes intégrales & de @

étant homéomorphes a des cercles, l'intersection % d'une feuille L de
gi? avec R est homéomorphe a un cercle. Plus précisément la restric-
tion de la projection canonique de EZ sur PC(1l) a une telle intersec-
tion ¥ est un revétement 3 deux feuillets de PR(1) = 51. D'apres ce

qui précéde, 1'holonomie de to est périodique de période 2.

5. Le contre exemple. Il est clair que le germe en 0 € RZ

w = x3 dx + y3 % x2 y2 dx

dy -
vérifie iii). D'autre part w est invariante par la symétrie (x,y) »(x-y)
Il en est de méme pour ses courbes intégrales. Il en résulte que w vé-

rifie ii) d'aprés un résultat de Poincaré (voir par exemple [6] page 95).

Montrons que w ne posséde pas d'intégrale premiere forte. En effet

s'il existe f,g € R{x,y} tels que

w = gdf ,

221



R. MOUSSU

le point 0 étant une singularité algébriquement isolée de w3, on a

g =g, + gl,Ox + go;ly + ... » avec g £ 0
1 4 4
f = Tg (X + y )t...

o
En prenant les termes d'ordre 3 dans 1'égalité dw = dg A df

déduit

, ON en

ny dx Ady = (gl,OdX + go’ldy) A(xadx + y3dy)

Or ceci est impossible puisque x2y n'appartient pas au R - sous espace

vectoriel de R{x,y} engendré par x3 et y3

Ce contre exemple s'interpréte , géométriquement, trés facilement.

Notons comme dans le paragraphe &4

Q= x3 dx + y3 dy - 1 xzy2 dx

N

le germe en 0 € ¢’ , complexifié de w et

n*(Q) = x3 65 = XB[((l+t4)+x(...))dx + x dt(...)]

1'éclaté de Q dans la carte (t,x). Le feuilletage QfQ de 32 défini
par 5 (et 5; ) possede 4 points singuliers,
o i N
E—(l+kk)
I, - (e ,0), k =0,1,2,3

Le groupe fondamental de la feuille
~ 3
L =pPe(1) - U 1
~ o k=0 K
de Gb n'est plus engendré par le lacet représenté par PR(1) € PC(1l).
La condition ii) n'est plus suffisante pour affirmer que 1l'holonomie

correspondant a un lacet d'indice 1 dans PC(1) autour d'un des points

I, est périodique.
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