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UNE DEMONSTRATION GEOMETRIQUE D'UN THEOREME DE LYAPUNOV-POINCARË. 

par R. Moussu. 

1. Introduction. Le but essentiel de ce travail est de démontrer géomé­

triquement le "théorème du centre" attribué à Poincaré [5] dans la lit­

térature occidentale et à Lyapunov [3] dans la littérature russe. Ensui­

te, nous montrons, à l'aide d'un contre exemple, qu'un centre ne possède 

pas nécessairement une intégrale première. 

Avant de rappeler son énoncé, précisons quelques notations et quel^ 

ques définitions. L'anneau des séries convergentes à deux indéterminées 

x,y sur ]R (respectivement sur <t) est noté]R{x,y} (respectivement C{x,y}). 

Si 

f = 
a,6 

f a , 3 
a 3 x y 

est un élément de!R{x,y} nous écrivons aussi 

f = 
a+8<v 

f a , 3 
a 3 x y 

les 3 petits points désignant évidemment des termes d'ordre > v . Dans 

toute la suite nous notons 

a) = a dx + b dy 

le germe en 0 €. ]R2 d'une 1-forme différentielle, analytique, i.e. 

a,b £3R{x,y}. Il est dit à AlngulcLAito, alge.bAA.que.mznt i^olzz si le 

quotient de!R{x,y} par l'idéal engendré par a et b est un ]R-espace vec­

toriel de dimension finie. Un élément f de]R{x,y} est une ¿ntQ.gAa.lo. pAQ.-

mltAQ. ioAto. de a) s'il existe g £]R{x,y} tel que 

u) = g df 

Le point 0 est dit un "czntAQ." pour u) s'il existe un voisinage U de 0 
2 * dans ]R tel que les courbes intégrales de u)/U-{ 0} soient homéomorphes à 

des cercles. Enfin nous notons 

wv= 
ot+3<v 

a a .6 dx + b a , 3 dy 

le jet d'ordre v de w en 0. 

Théorème du centre :Soit•w = a dx + b dy un germe en 0 £ ]R2 de 1-forme 

analytique tel que 0 soit 

i) une singularité isolée de w1 

ii) un centre pour w 

Alors w possède une intégrale première forte qui est un germe de fonction 

de Morse de signe constant. 
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THÉORÈME DE LYAPUNOV-POINCARÉ 

Comme nous le verrons dans dans le paragraphe suivant, il est très 

facile de déduire des hypothèses i) et ii) que : 

i') OJ est la différentielle d'une forme quadratique définie de 

signe constant. 

Il est clair que la réunion des hypothèses i) , ii) est équivalen­

te à celle de i') , ii) et que i') se généralise de la façon suivante : 

iii) le premier jet non nul CJ^ de a) en 0 est la différentielle 

d'un polynôme (naturellement homogène de degré v+1) de signe constant 

dont 0 est une singularité isolée. 

On pourrait penser qu'un germe aj qui vérifie ii) et iii) possède 

une intégrale première forte. Or nous verrons dans le paragraphe 5 que 

0) = 
1 
4 d x y*) 

1 
2 

2 2 x y dx 

vérifie ii) et iii) mais n'a pas d'intégrale première forte. 

1. Application retour et argument de la démonstration de Poincaré. Mon­

trons tout d'abord que i') est une conséquence de i) et ii). Soit 

le champ de vecteurs tel que 

rxl dx A dy = a), 

Il est bien connu (voir [6] ) que, si les valeurs propres du champ li­

néaire ont une partie réelle non nulle , X^ est de l'un des types : 

noeud - foyer - selle. Dans ces trois cas l'une au moins des courbes 

intégrales non singulières de w contient 0 dans son adhérence. Les va­

leurs propres de X^ sont donc imaginaires pures ; i') s'en déduit immédiate­

ment. Ainsi, en faisant un changement linéaire de coordonnées, on écrit 0) 

sous la forme 

(1) co = ( x + . . . ) d x + (y+...)dy . 

Il existe un voisinage de 0 sur lequel les courbes intégrales (non sin­

gulières) de tu sont transverses au champ radial R = x 9 
3 x 

y 3 
3y 

puisque 

o)(R) = 2 2 x + y + 

Ainsi, dans des coordonnées polaires (r,6) , l'équation de la courbe 

intégrale qui passe par le point (r,0) s'écrit : 

p(6) = r + a 2(0) 
2 

r 
Le diiizomoAphiAmz pKZmidK KQ,toaK correspondant à w est l'application 

h : r + h(r) = P(2TT ) . 

La démonstration de Poincaré consiste à montrer , voir [1] , que l'hy­

pothèse 
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ii)n les 3^(6) sont périodiques de période 2 TT pour k £ n 

est équivalente (lorsque w = x dx + y dy + ...) à 

ii')n il existe des polynômes homogènes de degré k pour 

k = 3,4-,...,2n tels que : 

OJ A d f 
n 

(Cn 2 2 x +y n dx A dy où 

f 
n 

2 2 x +y - p-, + ... +p 0 

3 2n 
Il est clair que l'application premier retour h est l'identité si ii) 

est vrai et qu'alors les a^(0) sont tous périodiques. Par induction, on 

construit ainsi une série formelle 

o 2 2 pj 
f = x + y + P ^ + . 

telle que co A df = 0. Le lemme de division de G. De Rham [2] permet 

alors d'affirmer que f est une intégrale première forte formelle de u>. 

Mais il reste encore à montrer (pour obtenir le résultat énoncé) que 

les P n peuvent-être choisis de telle façon que f converge ! Ceci est 

une conséquence du théorème A page 472 de [4-] . Nous démontrons direc­

tement et géométriquement l'existence d'un tel f dans le paragraphe 

Mais, auparavant, dans le paragraphe suivant nous allons présenter dans 

le cadre qui nous intéresse un résultat de [A-]. 

3. Existence de variétés invariantes et d'intégrales premières. Dans 

tout ce paragraphe et en particulier dans l'énoncé des propositions 1 

et 2, fi désigne un germe en 0 6 t2 de 1-forme différentielle holomorphe 

dont le jet d'ordre 1 en 0 s'écrit : 

(2) ^ = p y dx + q x dy 

où p et q sont deux entiers positifs premiers entre eux. Un germe de 

sous variété holomorphe de (T qui contient 0 et qui est une variété 

intégrale de fi s'appelle une vaKiztt invariante, de fi ; rappelons la : 

Proposition 1. (Poincaré) fi possède deux variétés invariantes L Q , 

L^ dont les équations sont du type 

Y = y + ... = 0 et X = x + . . . = 0 

Ainsi il existe de nouvelles coordonnées notées encore (x,y) telles 

que : 

fi = p y(l+...)dx + q x(l+...) dy 

La droite complexe y = 0 privée de 0 est une feuille, notée encore L , 

du feuilletage 3? (sans singularité) défini par la restriction de fi à 

(t - {0} . L^holonomiz de cette feuille est définie de la façon sui-
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vante : pour r > 0 et y £ (t petits,le lacet (dans L ) 

r : e (r 2Ì7T9-
e ,0) 6 e [0,1] 

se relève, suivant la projection (x,y) -> x, dans la feuille de 9*^ 
passant par le point (r,y) en le chemin 

r : e 
y 

+ (r 2iïï6 
e 

y(y,e)) Y(y,0) = y 

Le difféomorphisme d'holonomie qui correspond à Tq est la série entiè­
re en y 

n 
ro 

y h(y ) = y (y , 1) 

Un calcul élémentaire (voir [4] page 480) montre que 

n 
ro 

(y) e 
2iTTp 
q y + . . . 

Nous dirons que l'kolonomie. de \~Q ZAt ptKiodiqad si hp est périodi­

que de période q. 0 

Proposition 2. ([4] page 482). L'holonomie de Lq est périodique si et 

seulement si 0, possède une intégrale première du type X^Y^ où 

Y = y +. . . = 0 et X = x + . . . = 0 

sont des équations des variétés invariantes Lq et L'Q. 

Ce résultat est démontré avec des hypothèses moins restrictives 

dans [4] . Dans le cadre qui nous intéresse on peut le montrer plus 

facilement de la façon suivante. On déduit rapidement de la périodi­

cité de 
o 

que A eD 
r1 

D 
r2 

où r r r 2 € (R + possède une intégrale première 

f : (rry) rPryq uir-^y ) , où u |0,0|= 1. 

L'application F de D 
rl 

{0}) D 
r2 

dans £ définie par : F(x,y ) = f(r1,y1) si 

la varieté integrale de Çl passant (x,y) coupe 3D 
rl 

<D 
r2 

en :rliyi) est 

bien définie, holomorphe. Par construction, elle est constante sur les 

variétés intégrales de A/( Dr1 {0}) D : et puisqu'elle est bornée 

elle s'étend en une integrale premiere a e A/ D 
rl r2 

4. Démonstration du théorème du centre. Nous allons voir que ce théo­

rème est une conséquence immédiate des propositions précédentes en 
2 N 

éclatant le 0 € d . Rappelons brièvement cette technique. L'éclaté en 
2 

0 de C est le fibre canonique en droites complexes sur P(T(1) note 
*v£ / 2 ^2 

p : C P(C(1). Si (x,y) sont les coordonnées des points de (t , (î est 
défini par les deux cartes 

(t,x) C2 P_1(oo) c2 

(s,y) ir P-1(0) Œ2 avec s = 1 t y = tx. 
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L'application d'éclatement тт: <Г + (Г, et la projection p s'écrivent 

respectivement dans ces cartes 

TT : (t,x) -> (x.tx) (s,y) (sy,y) 

p : (t,x) -> t (s,y) + s 

Soit a) qui vérifie les hypothèses i) et ii) du théorème. Notons fi 

le germe en 0 £ C2 de 1-forme holomorphe obtenue en complexifiant eu . 

Il existe des coordonnées (x,y) de C2 dans lesquelles 

fi = (x+...)dx + (y+...)dy. 

Dans les cartes (t,x) et (s,y ) de A/2 on pose 

7T*(fi) /V» y fi 
J co 

avec 
nu 
Ao ((l+t 2)+x(.. . ))dx xdt(t+x(...)) 

fi 
oo 

( U + s 2)+y(...))dy yds(s + y( . . . ) ) 

où les ... désignent des fonctions holomorphes sur les domaines de dé­
finition des cartes correspondantes. Soient I et I' les points de 

P(C(1) C CA#2 de coordonnées (i,0) et (-i,0) dans la carte (t,x). Les 

formes fi^ et fiQ définissent sur (t - I u 1 1 un feuilletage sans singu­

larité dont 

L 
o 

P(C(1) - l u i ' 

est une feuille. Pour étudier FA au voisinage du point I, posons 

t = u + i. On a dans la carte (u,x) 

^O = (2iu 2 
u 

x(...))dx + x du ( i + u + x ( . . . ) ) 

Modulo un changement u u + ax son jet d'ordre 1 en I vérifie (2),avec 

(p,q) = (2,1). Admettons provisoirement que la condition nécessaire de 

la proposition 2 soit vérifiée , i.e : 

Affirmation : L'holonomie de la varieté invariante L q est périodique 

de période 2. 

Le germe de fi possède une intégrale première du type U.x où 
O 

U(u,x) € Œ{u,x} est une équation de la deuxième variété invariante L' 
A/ x >v 2 , , 0 

de fi . La restriction deïï a (T - Pd(l) étant un difféomorphisme holo-0 2 ^ morphe sur (C - {0} , L' = ÏÏ(L') est une variété intégrale de fi qui 
O o 

possède la même holonomie que L^. D'après la condition suffisante de 

la proposition 2, cette holonomie est périodique de période 1, i.e 

c'est l'identité. 

Dans les coordonnées (x1 = x + iy, y 1 = x - iy) le jet d'ordre 1 

défis'écrit 
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A1 1 
: 2 

(x' dy» + y' dx') 

D'après la proposition 1, Çl possède deux variétés invariantes L Q , 

tangente à y' = 0 , et une seconde qui est nécessairement L 1 , tan­

gente à x' = 0 . Les hypothèses de la proposition 2 sont vérifiées et 

Çl possède une intégrale première du type 

F = (x' +...)(y' + ... ) 

Dans les coordonnées (x.y) elle s'écrit 

F = 2 
x 

Z 
y 

La partie réelle f £ ]R{x,y} de F vérifie 

co A df = 0 . 2 2 
f = x + y + . . 

puisque w = A/R2 et Çl A dF = 0. La conclusion du théorème est alors une 

conséquence du lemme de division de G. De Rahm [2] . 

Démonstration de l'affirmation .La "partie réelle" de C , TT OR )= ]R 

où 
v 2 *»2 K C (t est la bande Moëbus , c'est à dire le fibre canonique en 

droite réelle sur 

S 1 * HR(l) C PC(1) 

La classe d'homotopie du plongement canonique de FOR ( 1 ) dans 

L Q = PÇ(1) - I u I' est un générateur de son groupe fondamental. 

D'autre part la restriction de TT à 

]R2 - RR(1) = ÏÏ"1^2 -{0}) 

est un diffeomorphisme sur JR2 -{0} . Les courbes integrales £ de ai 

étant homéomorphes à des cercles, l'intersection l d'une feuille L de 

avec ]R2 est homeomorphe a un cercle. Plus précisément la restric-

tion de la projection canonique de (C^2 sur P(C(1) a une telle intersec-

tion l est un revêtement a deux feuillets de FÜR ( 1 ) = S . D'après ce 

qui précède, l'holonomie de L q est périodique de période 2. 

FA 

5. Le contre exemple. 2 
Il est clair que le germe en 0 £ H 

3 . 
co = x dx 

3 
y dy 

1 2 2 A 
x y dx 

vérifie iii). D'autre part a) est invariante par la symétrie (x,y) + (x,-y) 

Il en est de même pour ses courbes intégrales. Il en résulte que OJ vé­
rifie ii) d'après un résultat de Poincaré (voir par exemple [6] page 95). 

Montrons que OJ ne possède pas d'intégrale première forte. En effet 

s'il existe f,g £]R{x,y} tels que 

io — g d f 
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le point 0 étant une singularité algébriquement isolée de o)^, on a 

g = g 0 9l.0 x g o , i y avec g ¿ 0 J o 

f = 1 
* g 

Jo 

(X* 
Y4) 

En prenant les termes d'ordre 3 dans l'égalité dco = dg A df , on en 

déduit 

x 2y dx A dy ( g 1 ; 0 d x g o , i d y ; (x^dx + y^dy) 

Or ceci est impossible puisque x2y n'appartient pas au 1R - sous espace 

vectoriel de ]R{x,y} engendré par x et y . 

Ce contre exemple s'interprète , géométriquement, très facilement. 

Notons comme dans le paragraphe 4 

Çl = dx 3 
y 

dy 1 
2 

2 2 
K y dx 

2 
le germe en 0 6 (T , complexifie de eu et 

7T*(ft) 3 
x 

a2 

o 

3 
x 

( (l + t^)+x(...))dx + x dt( . . . ) ] 

l'éclaté de Çl dans la carte (t,x). Le feuilletage FA de 
C2 défini 

par Ao [et Aoo possède 4 points singuliers. 

Ik (e 
1 
4 

(l+2k) 
0) k = 0,1,2,3 

Le groupe fondamental de la feuille 

L 
n 

PC(1) 
3 

k = 0 
Ik 

de 
A/ 

n'est plus engendre par le lacet represente par RIR ( 1 ) CPC(l). 
La condition ii) n'est plus suffisante pour affirmer que l'holonomie 

correspondant à un lacet d'indice 1 dans PC(1) autour d'un des points 

1^ est périodique. 
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