We study the semistability of , the universal quotient bundle on (1,3) restricted to any smooth surface (called congruence). Specifically, we deduce geometric conditions for a congruence , depending on the slope of a saturated linear subsheaf of . Moreover, we check that the Dolgachev-Reider Conjecture (i.e. the semistability of for nondegenerate congruences ) is true for all the congruences of degree less than or equal to 10. Also, when the degree of a congruence is less than or equal to 9, we compute the highest slope reached by the linear subsheaves of .
Arrondo, Enrique 1 ; Cobo, Sofía 1
@article{ASNSP_2010_5_9_3_503_0,
author = {Arrondo, Enrique and Cobo, Sof{\'\i}a},
title = {On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {503--522},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {3},
mrnumber = {2722653},
zbl = {1202.14038},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_3_503_0/}
}
TY - JOUR
AU - Arrondo, Enrique
AU - Cobo, Sofía
TI - On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2010
SP - 503
EP - 522
VL - 9
IS - 3
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2010_5_9_3_503_0/
LA - en
ID - ASNSP_2010_5_9_3_503_0
ER -
%0 Journal Article
%A Arrondo, Enrique
%A Cobo, Sofía
%T On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 503-522
%V 9
%N 3
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2010_5_9_3_503_0/
%G en
%F ASNSP_2010_5_9_3_503_0
Arrondo, Enrique; Cobo, Sofía. On the stability of the universal quotient bundle restricted to congruences of low degree of $\mathbb{G}{\bf (1,3)}$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 503-522. https://www.numdam.org/item/ASNSP_2010_5_9_3_503_0/
[1] , and , A focus on focal surfaces, Asian J. Math. 3 (2001), 535–560. | MR | Zbl
[2] and , On smooth surfaces in with a fundamental curve, Manuscripta Math. 79 (1993), 283–298. | EuDML | Zbl
[3] and , “On Congruences of Lines in the Projective Space”, Mém. Soc. Math. France, Vol. 50, 1992. | MR | Zbl | Numdam
[4] , Simplicity of the universal quotient bundle restricted to congruences of lines in , Adv. Geom. 6 (2006), 467–473. | MR | Zbl
[5] , “Estabilidad del Fibrado Universal Restringido a Congruencias”, PhD Thesis, Universidad Complutense de Madrid, 2008.
[6] and , “Groupes de Monodromie en Géométrie Algébrique”, SGA7II, Springer LNM 340, 1973. | MR
[7] and , On rank 2 vector bundles with and on Enriques surfaces, In: “Algebraic Geometry” (Chicago, IL), Lecture notes in Mahtematics, Springer-Verlag, Vol. 1479, 1991. | Zbl
[8] , The distribution of bidegrees of smooth surfaces in , Math. Ann. 292 (1992), 127–147. | MR | EuDML | Zbl
[9] , Surfaces of degree in the Grassmannian of lines in -space, J. Reine Angew. Math. 436 (1993), 87–127. | MR | EuDML | Zbl
[10] , “Algebraic Geometry”, Springer, 1997. | MR | Zbl
[11] , On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970), 191–196. | MR | Zbl






