Forward, backward and elliptic Harnack inequalities for non-negative solutions of a class of singular, quasi-linear, parabolic equations, are established. These classes of singular equations include the -Laplacean equation and equations of the porous medium type. Key novel points include form of a Harnack estimate backward in time, that has never been observed before, and measure theoretical proofs, as opposed to comparison principles. These Harnack estimates are established in the super-critical range (1.5) below. Such a range is optimal for a Harnack estimate to hold.
DiBenedetto, Emmanuele 1 ; Gianazza, Ugo 2 ; Vespri, Vincenzo 3
@article{ASNSP_2010_5_9_2_385_0,
author = {DiBenedetto, Emmanuele and Gianazza, Ugo and Vespri, Vincenzo},
title = {Forward, backward and elliptic {Harnack} inequalities for non-negative solutions to certain singular parabolic partial differential equations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {385--422},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {2},
mrnumber = {2731161},
zbl = {1206.35053},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/}
}
TY - JOUR AU - DiBenedetto, Emmanuele AU - Gianazza, Ugo AU - Vespri, Vincenzo TI - Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 385 EP - 422 VL - 9 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/ LA - en ID - ASNSP_2010_5_9_2_385_0 ER -
%0 Journal Article %A DiBenedetto, Emmanuele %A Gianazza, Ugo %A Vespri, Vincenzo %T Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 385-422 %V 9 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/ %G en %F ASNSP_2010_5_9_2_385_0
DiBenedetto, Emmanuele; Gianazza, Ugo; Vespri, Vincenzo. Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 385-422. https://www.numdam.org/item/ASNSP_2010_5_9_2_385_0/
[1] and , Hölder estimates of solutions of singular parabolic equations with measurable coefficients, Arch. Ration. Mech. Anal. 118 (1992), 257–271. | MR | Zbl
[2] , Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 (1957), 25–43. | MR | Zbl
[3] , Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations, Arch. Ration. Mech. Anal. 100 (1988), 129–147. | MR | Zbl
[4] and , Intrinsic Harnack estimates and extinction profile for certain singular parabolic equations, Trans. Amer. Math. Soc. 330 (1992), 783–811. | Zbl
[5] , and , Local space analiticity of solutions of certain singular parabolic equations, Indiana Univ. Math. J. 40 (1991), 741–765. | MR | Zbl
[6] , “Degenerate Parabolic Equations”, Springer Verlag, Series Universitext, New York, 1993. | MR | Zbl
[7] , and , Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math. 200 (2008), 181–209. | MR | Zbl
[8] , Extension à l’équation de la chaleur d’un théorème de A. Harnack, Rend. Circ. Mat. Palermo 3 (1954), 337–346. | MR | Zbl
[9] , On a class of similarity solutions of the porous media equation III, J. Math. Anal. Appl. 77 (1980), 381–402. | MR | Zbl
[10] , On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. | MR | Zbl
[11] , A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. | MR | Zbl
[12] , On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. | MR | Zbl
[13] and , Self-similar solutions of a fast diffusion equation that do not conserve mass, Differential Integral Equations 8 (1995), 2045–2064. | MR | Zbl
[14] , Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova 23 (1954), 422–434. | MR | EuDML | Zbl | Numdam






