In the case of smooth manifolds, we use Forman’s discrete Morse theory to realize combinatorially any Thom-Smale complex coming from a smooth Morse function by a pair triangulation-discrete Morse function. As an application, we prove that any class of homologous vector fields on a smooth oriented closed 3-manifold can be realized by a perfect matching on the Hasse diagram of a triangulation of the manifold.
Gallais, Étienne 1
@article{ASNSP_2010_5_9_2_229_0,
author = {Gallais, \'Etienne},
title = {Combinatorial realization of the {Thom-Smale} complex via discrete {Morse} theory},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {229--252},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {2},
mrnumber = {2731156},
zbl = {1201.57026},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/}
}
TY - JOUR AU - Gallais, Étienne TI - Combinatorial realization of the Thom-Smale complex via discrete Morse theory JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 229 EP - 252 VL - 9 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/ LA - en ID - ASNSP_2010_5_9_2_229_0 ER -
%0 Journal Article %A Gallais, Étienne %T Combinatorial realization of the Thom-Smale complex via discrete Morse theory %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 229-252 %V 9 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/ %G en %F ASNSP_2010_5_9_2_229_0
Gallais, Étienne. Combinatorial realization of the Thom-Smale complex via discrete Morse theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 2, pp. 229-252. https://www.numdam.org/item/ASNSP_2010_5_9_2_229_0/
[1] , Fast Khovanov homology computations, J. Knot Theory Ramifications 16 (2007), 243–255. | MR | Zbl
[2] , On discrete Morse functions and combinatorial decompositions, Formal power series and algebraic combinatorics (Vienna, 1997), Discrete Math. 217 (2000), 101–113. | MR | Zbl
[3] and , Discrete Morse theory and graph braid groups, Algebr. Geom. Topol. 5 (2005), 1075–1109. | MR | EuDML | Zbl
[4] , Combinatorial vector fields and dynamical systems, Math. Z. 228 (1998), 629–681. | MR | Zbl
[5] , Morse theory for cell complexes, Adv. Math. 134 (1998), 90–145. | MR | Zbl
[6] , Witten-Morse theory for cell complexes, Topology 37 (1998), 945–979. | MR | Zbl
[7] and , “-Manifolds and Kirby Calculus”, Graduate Studies in Mathematics, Vol. 20, American Mathematical Society, Providence, RI, 1999. | MR | Zbl
[8] and , Computing optimal Morse matchings, SIAM J. Discrete Math. 20 (2006), 11–25. | MR | Zbl
[9] , and , Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (2003), 221–233. | MR | Zbl
[10] , and , Applications of Forman’s discrete Morse theory to topology visualization and mesh compression, Transactions on Visualization and Computer Graphics 10 (2004), 499–508.
[11] and , “The Topology of Complexes”, Van Nostrand Reinhold Co., New York, 1969. | Zbl
[12] , “Morse Theory”, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. | MR
[13] , “Lectures on the -Cobordism Theorem”, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. | MR
[14] and , Holomorphic disks and knot invariants, Adv. Math 1 (2004), 58–116. | MR | Zbl
[15] and , Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027–1158. | MR | Zbl
[16] , On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 297–338. | MR | EuDML | Numdam
[17] and , “Introduction to Piecewise-Linear Topology”, Springer-Verlag, New York, 1972. | MR | Zbl
[18] and , Combinatorial Morse theory and minimality of hyperplane arrangements, Geom. Topol. 11 (2007), 1733–1766. | MR | Zbl
[19] , Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), 115–129 (electronic). | MR | Zbl
[20] , Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 607–643, 672. | MR
[21] , On -complexes, Ann. of Math. (2) 41 (1940), 809–824. | MR | JFM
[22] , “Geometric Integration Theory”, Princeton University Press, Princeton, New Jersey, 1957. | MR | Zbl






