We prove the existence of weak solutions of the equations of unsteady motion of an incompressible fluid with shear-dependent viscosity in a cylinder , where denotes a bounded domain. Under the assumption that the extra stress tensor possesses a -structure with , we are able to construct a weak solution with . Our approach is based on the Lipschitz truncation method, which is new in this context.
Diening, Lars 1 ; Růžička, Michael 1 ; Wolf, Jörg 2
@article{ASNSP_2010_5_9_1_1_0,
author = {Diening, Lars and R\r{u}\v{z}i\v{c}ka, Michael and Wolf, J\"org},
title = {Existence of weak solutions for unsteady motions of generalized {Newtonian} fluids},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {1--46},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {1},
mrnumber = {2668872},
zbl = {1253.76017},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_1_1_0/}
}
TY - JOUR AU - Diening, Lars AU - Růžička, Michael AU - Wolf, Jörg TI - Existence of weak solutions for unsteady motions of generalized Newtonian fluids JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 1 EP - 46 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2010_5_9_1_1_0/ LA - en ID - ASNSP_2010_5_9_1_1_0 ER -
%0 Journal Article %A Diening, Lars %A Růžička, Michael %A Wolf, Jörg %T Existence of weak solutions for unsteady motions of generalized Newtonian fluids %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 1-46 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2010_5_9_1_1_0/ %G en %F ASNSP_2010_5_9_1_1_0
Diening, Lars; Růžička, Michael; Wolf, Jörg. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 1-46. https://www.numdam.org/item/ASNSP_2010_5_9_1_1_0/
[1] and , Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), 125–145. | MR | Zbl
[2] , Stability of the rest state of a viscous incompressible fluid, Arch. Ration. Mech. Anal. 126 (1994), 231–242. | MR | Zbl
[3] and , “Principles of non–Newtonian Fluid Mechanics”, McGraw-Hill, London, 1974.
[4] , “An Introduction to Fluid Dynamics”, Cambridge University Press, Cambridge, 1967. | MR
[5] , and , Young measure-valued solutions for non-Newtonian incompressible fluids, Comm. Partial Differential Equations 19 (1994), 1763–1803. | MR | Zbl
[6] , and , “Dynamic of Polymer Liquids”, John Wiley, 1987, 2nd edition.
[7] and , -theory for a class of non-Newtonian fluids, SIAM J. Math. Anal. 39 (2007), 379–421. | MR | Zbl
[8] , Quelques exemples de fluides newtoniens generalisés, In: “Mathematical Topics in Fluid Mechanics” (Lisbon, 1991) (Harlow), Pitman Res. Notes Math. Ser., Vol. 274, Longman Sci. Tech., Harlow, 1992, 1–31.
[9] and , Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl
[10] , On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math. 58 (2005), 552–577. | MR | Zbl
[11] , and , Boundary regularity of shear-thickening flows, J. Math. Fluid Mech. (2010), to appear. | MR | Zbl
[12] , “Differentiation of Integrals in ”, Springer-Verlag, Berlin, 1975, with appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón, Lecture Notes in Mathematics, Vol. 481. | MR
[13] , and , On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, ESAIM Control Optim. Calc. Var. 14 (2008), 211–232, DOI: 10.1051/cocv:2007049. | MR | EuDML | Zbl | Numdam
[14] and , Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech. 7 (2005), 413–450. | MR | Zbl
[15] , and , An existence result for fluids with shear dependent viscosity – steady flows, Nonlinear Anal. 30 (1997), 3041–3049. | MR | Zbl
[16] , and , On existence result for fluids with shear dependent viscosity – unsteady flows, In: “Partial Differential Equations”, W. Jäger, J. Nečas, O. John, K. Najzar and J. Stará (eds.), Chapman and Hall, 2000, 121–129. | Zbl
[17] , and , On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34 (2003), 1064–1083 (electronic). | MR | Zbl
[18] , On stationary incompressible Norton fluids and some extensions of Korn’s inequality, Z. Anal. Anwendungen 13 (1994), 191–197. | MR | Zbl
[19] , “An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Linearized Steady Problems”, Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994. | MR | Zbl
[20] , and , On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4) 167 (1994), 147–163. | MR | Zbl
[21] and , “Elliptic Partial Differential Equations of Second Order”, Springer, Berlin, 2001, Reprint of the 1998 edition. | MR | Zbl
[22] , Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichugen, Math. Nachr. 4 (1951), 213–231. | MR | Zbl
[23] , “Continuum Mechanics of Viscoelastic Liquids”, Hindustan Publishing Corporation, Delhi, 1975. | MR | Zbl
[24] and , Very weak solutions of parabolic systems of -Laplacian type, Ark. Mat. 40 (2002), 105–132. | MR | Zbl
[25] , New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Steklov Inst. Math. 102 (1967), 95–118.
[26] , Modifications of the Navier-Stokes equations for large gradients of the velocities, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 126–154.
[27] , On some modifications of the Navier-Stokes equations for large gradients of velocity, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 7 (1968), 126–154. | MR
[28] , “The Mathematical Theory of Viscous Incompressible Flow”, Gordon and Breach, New York, 1969, 2nd edition. | MR | Zbl
[29] , Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), 193–248. | MR
[30] , “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, Dunod, Paris, 1969. | MR | Zbl
[31] , and , Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer, Czechoslovak Math. J. 42 (117) (1992), 549–576. | MR | EuDML | Zbl
[32] , , and , “Weak and Measure-valued Solutions to Evolutionary PDEs”, Applied Mathematics and Mathematical Computations, Vol. 13, Chapman & Hall, London, 1996. | MR | Zbl
[33] , and , On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci. 3 (1993), 35–63. | MR | Zbl
[34] , and , On Weak Solutions to a Class of Non-Newtonian Incompressible Fluids in Bounded Three–dimensional Domains. The Case , Adv. Differential Equations 6 (2001), 257–302. | MR | Zbl
[35] and , Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, Handb. Differential Equations, Elsevier/North-Holland, Amsterdam, 2005, 371–459. | MR | Zbl
[36] , and , Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci. 5 (1995), 789–812. | MR | Zbl
[37] and , “Fine Regularity of Solutions of Elliptic Partial Differential Equations”, Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, Providence, RI, 1997. | MR | Zbl
[38] and , Interior integral estimates on weak solutions of nonlinear parabolic systems, 1994, preprint Humboldt University.
[39] , Sur le normes équivalentes dans et sur la coercivité des formes formellement positives, Séminaire Equations aux Dérivées Partielles, Montreal 317 (1966), 102–128.
[40] , “Les Méthodes Directes en la Thèorie des Equations Elliptiques”, Academia, Praha, 1967. | MR
[41] , Theory of multipolar viscous fluids, In: “The Mathematics of Finite Elements and Applications”, VII (Uxbridge, 1990) (London), Academic Press, London, 1991, 233–244. | MR | Zbl
[42] , Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids, Appl. Anal. 43 (1992), 245–296. | MR | Zbl
[43] , Spazi e loro proprietà, Ann. Mat. Pura Appl. (4) 69 (1965), 383–392. | MR | Zbl
[44] , Mechanics of Non-Newtonian Fluids, In: “Recent Developments in Theoretical Fluid Mechanics”, G. P. Galdi and J. Nečas (eds.), Research Notes in Mathematics Series, Vol. 291, Longman, 1993, 129–162. | MR | Zbl
[45] , Flow of shear dependent electrorheological fluids: unsteady space periodic case, In: “Applied Nonlinear Analysis”, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, 485–504. | MR | Zbl
[46] , Modeling, mathematical and numerical analysis of electrorheological fluids, Appl. Math. 49 (2004), 565–609. | MR | EuDML | Zbl
[47] , On extensions of Sobolev functions defined on regular subsets of metric measure spaces, J. Approx. Theory 144 (2007), 139–161. | MR | Zbl
[48] , “Singular Integrals and Differentiability Properties of Functions”, Princeton University Press, Princeton, N.J., 1970. | MR | Zbl
[49] , On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscripta Math. 35 (1981), 125–145. | MR | EuDML | Zbl
[50] and , “The Non-Linear Field Theories of Mechanics”, Handbuch der Physik, Vol. III/3, Springer, New York, 1965. | MR | Zbl
[51] , “Regularität schwacher Lösungen elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung. Der Fall ”, Dissertation, Humboldt Universität, 2001.
[52] , Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity, J. Math. Fluid Mech. 9 (2007), 104–138. | MR | Zbl






