We establish various estimates for the Schrödinger operator on Riemannian manifolds satisfying the doubling property and a Poincaré inequality, where is the Laplace-Beltrami operator and belongs to a reverse Hölder class. At the end of this paper we apply our result to Lie groups with polynomial growth.
Badr, Nadine 1 ; Ben Ali, Besma 2
@article{ASNSP_2009_5_8_4_725_0,
author = {Badr, Nadine and Ben Ali, Besma},
title = {$L^{p}$ {Boundedness} of the {Riesz} transform related to {Schr\"odinger} operators on a manifold},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {725--765},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {4},
mrnumber = {2647910},
zbl = {1200.35060},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2009_5_8_4_725_0/}
}
TY - JOUR
AU - Badr, Nadine
AU - Ben Ali, Besma
TI - $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2009
SP - 725
EP - 765
VL - 8
IS - 4
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2009_5_8_4_725_0/
LA - en
ID - ASNSP_2009_5_8_4_725_0
ER -
%0 Journal Article
%A Badr, Nadine
%A Ben Ali, Besma
%T $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 725-765
%V 8
%N 4
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2009_5_8_4_725_0/
%G en
%F ASNSP_2009_5_8_4_725_0
Badr, Nadine; Ben Ali, Besma. $L^{p}$ Boundedness of the Riesz transform related to Schrödinger operators on a manifold. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 725-765. https://www.numdam.org/item/ASNSP_2009_5_8_4_725_0/
[1] , An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691–727. | MR | Zbl
[2] , On estimates for square roots of second order elliptic operators on , Publ. Mat. 48 (2004), 159–186. | MR | EuDML | Zbl
[3] and , Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble) 57 (2007), 1975–2013. | MR | EuDML | Zbl | Numdam
[4] and , Riesz transform on manifolds and Poincaré inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005), 531–555. | MR | EuDML | Zbl | Numdam
[5] , and , Boundedness of Banach space valued singular integral operators and applications to Hardy spaces, unpublished manuscript.
[6] and , Weighted norm inequalities, off diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators, J. Funct. Anal. 241 (2006), 703–746. | MR | Zbl
[7] and , Weighted norm inequalities, off diagonal estimates and elliptic operators. Part I: General operator theory and weights, Adv. Math. 212 (2007), 225–276. | MR | Zbl
[8] , Real interpolation of Sobolev spaces associated to a weight, Potential Anal. 3 (2009), 345–374. | MR | Zbl
[9] , Etude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée, In: “Séminaire de Probabilités”, XXI, Lecture Notes in Math., Vol. 1247, Springer, Berlin, 1987, 137–172. | MR | EuDML | Zbl | Numdam
[10] , Vector fields and Ricci curvature, Bull. Amer. Mat. Soc. 52 (1946), 776–797. | MR | Zbl
[11] , and , Essential self-adjointness of Schrödinger-type operators on manifolds, Russ. Math. Surveys 57 (2002), 641–692. | MR | Zbl
[12] , and , Subelliptic Poincaré inequalities: The case , Publ. Mat. 39 (1995), 313–334. | MR | EuDML | Zbl
[13] , A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) (1982), 213–230. | MR | EuDML | Zbl | Numdam
[14] , and , Parabolic Schrödinger operators, J. Math. Anal. Appl. 343 (2008), 965–974. | MR | Zbl
[15] , “Riemannian Geometry – A Modern Introduction”, Cambridge University Press, 1993. | MR | Zbl
[16] , and , Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemmanian manifolds, J. Differential Geom. 17 (1982), 15–33. | MR
[17] A note on Riesz potentials and the first eigenvalue, Proc. Amer. Math. Soc. 117 (1993), 683–685. | MR | Zbl
[18] and , “Analyse Harmonique sur Certains Espaces Homogènes”, Lecture Notes in Math., Springer, 1971. | Zbl
[19] and , Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl
[20] and , Riesz transforms for , Trans. Amer. Math. Soc. 351 (1999), 1151–1169. | MR | Zbl
[21] and , Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz, Arch. Math. 83 (2004), 229–242. | MR
[22] and , Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293–314. | MR | EuDML
[23] , and , “Analysis and Geometry on Groups”, Cambridge Tracts in Mathematics, 1993. | MR | Zbl
[24] , Harmonic analysis on semigroups, Ann. of Math. (2) 117 (1983), 267–283. | MR | Zbl
[25] and , Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), 233–265. | MR | EuDML | Zbl
[26] and , Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal. 142 (1996), 89–128. | MR | Zbl
[27] and , Resolution of a semilinear equation in , Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 275–288. | MR | Zbl
[28] and , “Weighted Norm Inequalities and Related Topics”, North Holland Math. Studies 116, North Holland, Amsterdam, 1985. | MR | Zbl
[29] , The heat equation on non compact Riemannian manifolds, Math. USSR. Sb 72 (1992), 47–76. | MR
[30] and , Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 3 (2005), 825–890. | MR | EuDML | Zbl | Numdam
[31] , Inégalités maximales pour l’opérateur de Schrödinger C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 249–252. | MR | Zbl
[32] and , Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859–896. | MR | Zbl
[33] , Croissance polynomiale et période des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333–379. | MR | EuDML | Zbl | Numdam
[34] and , Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), 1–101. | MR | Zbl
[35] and , Une inégalité , unpublished manuscript.
[36] and , Change of variable results for and reverse Hölder classes, Trans. Amer. Math. Soc. 328 (1991), 639–666. | Zbl
[37] , -theory of Schrödinger operators with a singular potential, In: “Aspects of Positivity in Function Analysis”, North-Holland Math. Stud., 1985, 63–78. | MR
[38] and , A remark on Poincaré inequality on metric spaces, Math. Scand. 95 (2004), 299–304. | MR | Zbl
[39] , On square functions associated to sectorial operators, Bull. Soc. Math. France 132 (2004), 137–156. | MR | EuDML | Zbl | Numdam
[40] , Ph.D thesis, 1998.
[41] , Estimations des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), 151–218. | MR
[42] , La transformée de Riesz sur les variétés coniques, J. Funct. Anal. 168 (1999), 145–238. | MR
[43] , Estimations du noyau de la chaleur sur les variétés coniques et ses applications, Bull. Sci. Math. 124 (2000), 365–384. | MR
[44] , “Lecture Notes on Geometric Analysis”, Lecture Notes series 6, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993. | MR | Zbl
[45] , Démonstration probabiliste de certaines inégalités de Littlewood-Paley, In: “Séminaire de Probabilités”, X, Lecture Notes in Math., Vol. 511, Springer-Verlag, 1976, 125–183. | MR | Zbl | Numdam
[46] , and , Balls and metrics defined by vector fields, Acta Math. 155 (1985), 103–147. | MR | Zbl
[47] , The spectral bound and principal eigenvalues of Schrödinger operators on Riemannian manifolds, Duke Math. J. 110 (2001), 1–35. | MR | Zbl
[48] , A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 65 (1992), 27–38. | MR | Zbl
[49] , Parabolic Harnack inequality for divergence form second order differential operator, Potential Anal. 4 (1995), 429–467. | MR | Zbl
[50] , “Aspects of Sobolev-type Inequalities”, Cambridge University Press, 2002. | MR | Zbl
[51] , estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546. | MR | EuDML | Zbl | Numdam
[52] , Riesz transform, gaussian bounds and the method of wave equation, Math. Z. 247 (2004), 643–662. | MR | Zbl
[53] and , Imaginary powers of Laplace operators, Proc. Amer. Math. Soc. 129 (2001), 1745–1754. | MR | Zbl
[54] and , “Introduction to Fourier Analysis in Euclidean Spaces”, Princeton University Press, 1971. | Zbl
[55] , “Singular Integrals and Differentiability Properties of Functions”, Princeton University Press, 1970. | MR | Zbl
[56] , “Topics in Harmonic Analysis Related to the Littlewood-Paley Theory”, Princeton U.P, 1970. | MR | Zbl
[57] and , “Weighted Hardy Spaces”, Lecture Notes in Math., Vol. 1381, Springer-Verlag, 1989. | MR | Zbl
[58] , Fonctions harmoniques sur les groupes de Lie, C. R. Acad. Sci. Paris, Sér. I Math., 304 (1987), 519–521. | MR | Zbl
[59] , Sobolev spaces on a Riemannian manifold and their equivalence, J. Math. Kyoto Univ. 32 (1992), 621–654. | MR | Zbl






