Given a smooth compact Riemannian manifold and a Hamiltonian on the cotangent space , strictly convex and superlinear in the momentum variables, we prove uniqueness of certain “ergodic” invariant Lagrangian graphs within a given homology or cohomology class. In particular, in the context of quasi-integrable Hamiltonian systems, our result implies global uniqueness of Lagrangian KAM tori with rotation vector . This result extends generically to the -closure of KAM tori.
Fathi, Albert 1 ; Giuliani, Alessandro 2 ; Sorrentino, Alfonso 3, 4
@article{ASNSP_2009_5_8_4_659_0,
author = {Fathi, Albert and Giuliani, Alessandro and Sorrentino, Alfonso},
title = {Uniqueness of invariant {Lagrangian} graphs in a homology or a cohomology class},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {659--680},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {4},
mrnumber = {2647908},
zbl = {1192.37086},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2009_5_8_4_659_0/}
}
TY - JOUR AU - Fathi, Albert AU - Giuliani, Alessandro AU - Sorrentino, Alfonso TI - Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 659 EP - 680 VL - 8 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2009_5_8_4_659_0/ LA - en ID - ASNSP_2009_5_8_4_659_0 ER -
%0 Journal Article %A Fathi, Albert %A Giuliani, Alessandro %A Sorrentino, Alfonso %T Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 659-680 %V 8 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2009_5_8_4_659_0/ %G en %F ASNSP_2009_5_8_4_659_0
Fathi, Albert; Giuliani, Alessandro; Sorrentino, Alfonso. Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 659-680. https://www.numdam.org/item/ASNSP_2009_5_8_4_659_0/
[1] , Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspekhi Mat. Nauk 5 (113) 18 (1963), 13–40. | MR
[2] , “The Structure of Classical Diffeomorphism Groups”, Mathematics and its Applications, Vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. | MR | Zbl
[3] , Existence of critical subsolutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup. (3) 40 (2007), 445–452. | MR | EuDML | Zbl | Numdam
[4] , Surface transformations and their dynamical applications, Acta Math. (1) 43 (1920); Sur quelques courbes fermées remarquables, Bull. Soc. Math. France (1) 60 (1932); reprinted in Collected Mathematical Papers, Vol. II, 111–418, respectively (New York: AMS 1950). | EuDML | JFM
[5] and , Unicity of KAM tori, Ergodic Theory Dynam. Systems (3) 27 (2007), 713–724. | MR | Zbl
[6] , On minimizing measures of the action of autonomous Lagrangians, Nonlinearity (6) 8 (1995), 1077–1085. | MR | Zbl
[7] , , and , Borel summability and Lindstedt series, Comm. Math. Phys. (1) 269 (2007), 175–193. | MR | Zbl
[8] and , Global minimizers of autonomous Lagrangians. In: “22 Colóquio Brasileiro de Matemática” [22nd Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999, 148 pp. | MR | Zbl
[9] , Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980), 45–93. | MR | EuDML | Zbl | Numdam
[10] , “The Weak KAM Theorem in Lagrangian Dynamics”, Cambridge University Press, to appear.
[11] and , Existence de difféomorphismes minimaux, Astérisque 49 (1977), 37–59. | MR | Zbl | Numdam
[12] and , Existence of critical subsolutions of the Hamilton-Jacobi equation, Invent. Math. (2) 155 (2004), 363–388. | MR | Zbl
[13] and , Hyperbolic low-dimensional invariant tori and summations of divergent series, Comm. Math. Phys. (3) 227 (2002), 421–460. | MR | Zbl
[14] and , Degenerate elliptic resonances, Comm. Math. Phys. (2) 257 (2005), 319–362. | MR | Zbl
[15] , Inégalités “a priori” pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Inst. Hautes Études Sci. Publ. Math. 70 (1989), 47–101. | MR | EuDML | Zbl | Numdam
[16] , On the dynamics of Lagrangian tori invariant by symplectic diffeomorphisms, In: “Progress in variational methods in Hamiltonian systems and elliptic equations” (L’Aquila, 1990), Pitman Res. Notes Math. Ser., 243, Longman Sci. Tech., Harlow, 1992, 92–112. | MR | Zbl
[17] , On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530. | MR
[18] , and , Homogenization of Hamilton-Jacobi equation, Unpublished preprint, 1987.
[19] , Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. (N.S.) (2) 28 (1997), 141–153. | MR | Zbl
[20] , Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. (2) 207 (1991), 169–207. | MR | EuDML | Zbl
[21] , Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble) (5) 43 (1993), 1349–1386. | MR | EuDML | Zbl | Numdam
[22] , On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1962), 1–20. | MR | Zbl
[23] and , KAM theory in configuration space, Comment. Math. Helv. (1) 64 (1989), 84–132. | MR | EuDML | Zbl
[24] , The Kolmogorov-Arnold-Moser theorem, Math. Phys. Electron. J. 10: Paper 3, 37 pp. (electronic), 2004. | MR | EuDML | Zbl
[25] , Asymptotic cycles, Ann. of Math. (2) 66 (1957), 270–284. | MR | Zbl
[26] , On the integrability of Tonelli Hamiltonians, preprint (2009), arXiV:0903.4300. | MR





