We consider multidimensional variational integrals for vector-valued functions . Assuming that the integrand satisfies the standard smoothness, convexity and growth assumptions only near we investigate the partial regularity of minimizers (and generalized minimizers) . Introducing the open set we prove that is dense in , but we demonstrate for by an example that may have positive measure. In contrast, for one has .
Additionally, we establish analogous results for weak solutions of quasilinear elliptic systems.
Scheven, Christoph 1 ; Schmidt, Thomas 2
@article{ASNSP_2009_5_8_3_469_0,
author = {Scheven, Christoph and Schmidt, Thomas},
title = {Asymptotically regular problems {II:} {Partial} {Lipschitz} continuity and a singular set of positive measure},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {469--507},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {3},
mrnumber = {2581424},
zbl = {1197.49043},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/}
}
TY - JOUR AU - Scheven, Christoph AU - Schmidt, Thomas TI - Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 469 EP - 507 VL - 8 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/ LA - en ID - ASNSP_2009_5_8_3_469_0 ER -
%0 Journal Article %A Scheven, Christoph %A Schmidt, Thomas %T Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 469-507 %V 8 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/ %G en %F ASNSP_2009_5_8_3_469_0
Scheven, Christoph; Schmidt, Thomas. Asymptotically regular problems II: Partial Lipschitz continuity and a singular set of positive measure. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 469-507. https://www.numdam.org/item/ASNSP_2009_5_8_3_469_0/
[1] and , A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal. 99 (1987), 261–281. | MR | Zbl
[2] and , Convex functionals and partial regularity, Arch. Ration. Mech. Anal. 102 (1988), 243–272. | MR | Zbl
[3] , Hölder continuity of the solutions of some nonlinear elliptic systems, Adv. Math. 48 (1983), 15–43. | MR | Zbl
[4] and , Linearization at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh, Sect. A 102 (1986), 291–303. | MR | Zbl
[5] , and , Partial regularity for almost minimizers of quasi-convex integrals, SIAM J. Math. Anal. 32 (2000), 665–687. | MR | Zbl
[6] and , Optimal interior partial regularity for nonlinear elliptic systems: The method of -harmonic approximation, Manuscripta Math. 103 (2000), 267–298. | MR | Zbl
[7] and , Regularity of -minimizers of quasi-convex variational integrals with polynomial growth, Differential Geom. Appl. 17 (2002), 139–152. | MR | Zbl
[8] , Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal. 95 (1986), 227–252. | MR | Zbl
[9] , and , Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal. 172 (2004), 295–307. | MR | Zbl
[10] , Global regularity for almost minimizers of nonconvex variational problems, Ann. Mat. Pura Appl. (4) 187 (2008), 263–321. | MR | Zbl
[11] and , Partial continuity for elliptic problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire 25 (2008), 471–503. | MR | EuDML | Zbl | Numdam
[12] , and , Global Morrey regularity results for asymptotically convex variational problems, Forum Math. 20 (2008), 921–953. | MR | Zbl
[13] , and , Global Lipschitz regularity for almost minimizers of asymptotically convex variational problems, to appear in Ann. Mat. Pura Appl. (4). | MR | Zbl
[14] , Lipschitz regularity for certain problems from relaxation, Asymptot. Anal. 12 (1996), 145–151. | MR | Zbl
[15] and , Global gradient bounds for relaxed variational problems, Manuscripta Math. 92 (1997), 287–302. | MR | EuDML | Zbl
[16] and , partial regularity of functions minimising quasiconvex integrals, Manuscripta Math. 54 (1986), 121–143. | MR | EuDML | Zbl
[17] , “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Princeton University Press, Princeton, 1983. | MR | Zbl
[18] and , “An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs”, Edizioni della Normale, Pisa, 2005. | MR | Zbl
[19] and , Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 185–208. | MR | EuDML | Zbl | Numdam
[20] and , Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55–99. | MR | EuDML | Zbl
[21] and , Differentiability of minima of non-differentiable functionals, Invent. Math. 72 (1983), 285–298. | MR | EuDML | Zbl
[22] , Precisazione delle funzioni di e singolarità delle soluzioni deboli di sistemi ellitici non lineari, Boll. Unione Mat. Ital. (4) 2 (1969), 71–76. | MR | Zbl
[23] , “Direct Methods in the Calculus of Variations”, World Scientific Publishing Co., New York, 2003. | MR | Zbl
[24] and , Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Ration. Mech. Anal. 31 (1968), 173–184. | MR | Zbl
[25] , A new partial regularity proof for solutions of nonlinear elliptic systems, Manuscripta Math. 95 (1998), 11–31. | MR | EuDML | Zbl
[26] , and , An example of irregular solution to a nonlinear Euler-Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 23 (1996), 57–67. | MR | EuDML | Zbl | Numdam
[27] and , The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006), 331–398. | MR | Zbl
[28] and , The singular set of Lipschitzian minima of multiple integrals Arch. Ration. Mech. Anal. 184 (2007), 341–369. | MR | Zbl
[29] and , Lipschitz continuity of local minimizers of a nonconvex functional, Appl. Anal. 28 (1988), 223–230. | MR | Zbl
[30] , Regularity for minima of functionals with p-growth, J. Differential Equations 76 (1988), 203–212. | MR | Zbl
[31] , The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal. 166 (2003), 287–301. | MR | Zbl
[32] , Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1968), 649–670. | MR | Zbl
[33] , Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, Theor. Nonlin. Oper., Constr. Aspects, Proc. int. Summer Sch., Berlin 1975 (1977), 197–206.
[34] , Lipschitz regularity of solutions of some asymptotically convex problems, Proc. Roy. Soc. Edinburgh, Sect. A 117 (1991), 59–73. | MR | Zbl
[35] , “Convex Analysis”, Princeton University Press, Princeton, 1970. | MR
[36] and , Asymptotically regular problems I: Higher integrability, submitted. | MR | Zbl
[37] , “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, Cambridge, 1993. | MR | Zbl
[38] and , A singular minimizer of a smooth strongly convex functional in three dimensions, Calc. Var. Partial Differential Equations 10 (2000), 213–221. | MR | Zbl
[39] and , Non-Lipschitz minimizers of smooth uniformly convex functionals, Proc. Natl. Acad. Sci. USA 99 (2002), 15269–15276. | MR | Zbl
[40] , “Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators”, Springer, New York, 1990. | MR





