We obtain characterizations of the pairs of positive measures and for which the discrete non-linear Wolff-type potential associated to sends into .
Cascante, Carme 1 ; Ortega, Joaquin 1
@article{ASNSP_2009_5_8_2_309_0,
author = {Cascante, Carme and Ortega, Joaquin},
title = {On the boundedness of discrete {Wolff} potentials},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {309--331},
year = {2009},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 8},
number = {2},
mrnumber = {2548249},
zbl = {1185.46018},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2009_5_8_2_309_0/}
}
TY - JOUR AU - Cascante, Carme AU - Ortega, Joaquin TI - On the boundedness of discrete Wolff potentials JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 309 EP - 331 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2009_5_8_2_309_0/ LA - en ID - ASNSP_2009_5_8_2_309_0 ER -
%0 Journal Article %A Cascante, Carme %A Ortega, Joaquin %T On the boundedness of discrete Wolff potentials %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 309-331 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2009_5_8_2_309_0/ %G en %F ASNSP_2009_5_8_2_309_0
Cascante, Carme; Ortega, Joaquin. On the boundedness of discrete Wolff potentials. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 309-331. https://www.numdam.org/item/ASNSP_2009_5_8_2_309_0/
[1] and , “Function Spaces and Potential Theory”, Springer-Verlag, Berlin-Heidelberg-New York, 1996. | MR
[2] , and , Trace inequalities of Sobolev type in the upper triangle case, Proc. London Math. Soc. 80 (2000), 391–414. | MR | Zbl
[3] , and , Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels, Indiana Univ. Math. J. 53 (2004), 845–882. | MR | Zbl
[4] , and , On inequalities, J. London Math. Soc. 7 (2006), 497–511. | MR | Zbl
[5] and , Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. | MR | EuDML | Zbl | Numdam
[6] and , The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. | MR
[7] , Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J. 111 (2002), 1–48. | MR | Zbl
[8] , “Sobolev Spaces”, Springer-Verlag, Berlin-Heidelberg-New York, 1985. | MR
[9] and , Quasilinear and Hessian equations of Lane–Emden type, Comm. Partial Differential Equations 31 (2006), 1779–1791. | MR | Zbl
[10] , and , Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523–580. | MR | Zbl
[11] , Imbedding and multiplier theorems for discrete Littlewood–Paley spaces, Pacific J. Math. 176 (1996), 529–556. | MR | Zbl
[12] , Nonlinear potentials and trace inequalities, Oper. Theory Adv. Appl. 110 (1999), 323–343. | MR | Zbl





