We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.
@article{ASNSP_2008_5_7_4_635_0,
author = {Mancini, Gianni and Sandeep, Kunnath},
title = {On a semilinear elliptic equation in $\mathbb {H}^n$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {635--671},
year = {2008},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 7},
number = {4},
mrnumber = {2483639},
zbl = {1179.35127},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/}
}
TY - JOUR
AU - Mancini, Gianni
AU - Sandeep, Kunnath
TI - On a semilinear elliptic equation in $\mathbb {H}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
SP - 635
EP - 671
VL - 7
IS - 4
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/
LA - en
ID - ASNSP_2008_5_7_4_635_0
ER -
%0 Journal Article
%A Mancini, Gianni
%A Sandeep, Kunnath
%T On a semilinear elliptic equation in $\mathbb {H}^n$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2008
%P 635-671
%V 7
%N 4
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/
%G en
%F ASNSP_2008_5_7_4_635_0
Mancini, Gianni; Sandeep, Kunnath. On a semilinear elliptic equation in $\mathbb {H}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 4, pp. 635-671. https://www.numdam.org/item/ASNSP_2008_5_7_4_635_0/
[1] , and , A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 313-342. | Numdam | Zbl | MR | EuDML
[2] , On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc. 129 (2001), 1233-1246. | Zbl | MR
[3] , and , The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space, Math. Res. Lett. 15 (2008), 613-622. | Zbl | MR
[4] , and , The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47-92. | Zbl | MR
[5] and , Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | Zbl | MR
[6] and , A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163 (2002), 259-293. | Zbl | MR
[7] and , Nonlinear Liouvile Theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215. | Zbl | MR
[8] and , Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator, Methods Appl. Anal., in press. | Zbl | MR
[9] , , and , Hardy Sobolev inequalities and hyperbolic symmetry, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.19 (2008), 189-197. | Zbl | MR
[10] , “Eigenvalues in Riemannian Geometry", Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. | Zbl | MR
[11] and , “Theory of Ordinary Differential Equations", TATA McGraw-Hill Publishing Co. LTD, New Delhi, 1985. | Zbl | MR
[12] , Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2003), 725-734. | Zbl | MR
[13] , and , Classification of solutions of a critical Hardy-Sobolev operator, J. Differential Equations 224 (2006), 258-276. | Zbl | MR
[14] and , Some existence results for the Webster scalar curvature problem in presence of symmetry, Ann. Mat. Pura Appl. 183 (2004), 469-493. | Zbl | MR
[15] and , Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448. | Zbl | MR
[16] and , Hardy-Sobolev-Maz'ya inequalities: symmetry and breaking symmetry of extremal functions, to appear on Contemp. Math. | Zbl | MR
[17] , “Sobolev Spaces on Riemannian Manifolds", Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, 1996. | Zbl | MR
[18] Kam-Li and Yi, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333 (1992), 339-363. | Zbl | MR
[19] and , A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pure Appl. 81 (2002), 983-997. | Zbl | MR
[20] Maz'ya and G. Vladimir, “Sobolev Spaces", Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. | MR
[21] , Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal. 68 (2008), 3972-3986. | Zbl | MR
[22] , Sobolev inequalities for weighted gradients, Comm. Partial Differential Equations 31 (2006), 1479-1504. | Zbl | MR
[23] and , Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J. 131 (2006), 167-202. | Zbl | MR
[24] and , Cylindrical symmetry of extremals of a Hardy-Sobolev inequality, Ann. Mat. Pura Appl. (4) 183 (2004), 165-172. | Zbl | MR
[25] , and , Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336 (2003), 811-815. | Zbl | MR
[26] , The Brézis-Nirenberg problem on . Existence and uniqueness of solutions. Elliptic and parabolic problems, (Rolduc/Gaeta, 2001), 283-290, World Sci. Publ., River Edge, NJ, 2002. | Zbl | MR
[27] , “Das Brezis-Nirenberg Problem im Hn”, PhD thesis, Universität Basel, 2003.
[28] and , On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality, Ann. Mat. Pura Appl. (4) 186 (2007), 645-662. | Zbl | MR






