We introduce and study the notion of Taylorian points of algebraic curves in , which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.
@article{ASNSP_2008_5_7_3_545_0,
author = {Bos, Len and Calvi, Jean-Paul},
title = {Taylorian points of an algebraic curve and bivariate {Hermite} interpolation},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {545--577},
year = {2008},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 7},
number = {3},
mrnumber = {2466439},
zbl = {1177.41001},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2008_5_7_3_545_0/}
}
TY - JOUR AU - Bos, Len AU - Calvi, Jean-Paul TI - Taylorian points of an algebraic curve and bivariate Hermite interpolation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 545 EP - 577 VL - 7 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2008_5_7_3_545_0/ LA - en ID - ASNSP_2008_5_7_3_545_0 ER -
%0 Journal Article %A Bos, Len %A Calvi, Jean-Paul %T Taylorian points of an algebraic curve and bivariate Hermite interpolation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 545-577 %V 7 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2008_5_7_3_545_0/ %G en %F ASNSP_2008_5_7_3_545_0
Bos, Len; Calvi, Jean-Paul. Taylorian points of an algebraic curve and bivariate Hermite interpolation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 3, pp. 545-577. https://www.numdam.org/item/ASNSP_2008_5_7_3_545_0/
[1] B. Bojanov and Y. Xu., On polynomial interpolation of two variables, J. Approx. Theory 120 (2003), 267-282. | Zbl | MR
[2] , and , “Spline Functions and Multivariate Interpolations”, Mathematics and its Applications, Vol. 248, Academic Publishers Group, Dordrecht, 1993. | Zbl | MR
[3] , On certain configurations of points in which are unisolvent for polynomial interpolation, J. Approx. Theory 64 (1991), 271-280. | Zbl | MR
[4] and , Multipoint taylor interpolation, Calcolo 51 (2008), 35-51. | Zbl | MR
[5] and , The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx. 10 (2004), 441-454. | Zbl | MR
[6] , and , “Ideals, Varieties, and Algorithms”, Undergraduate Texts in Mathematics, Springer, New York, third edition, 2007. | Zbl | MR
[7] and , On multivariate polynomial interpolation, Constr. Approx. 6 (1990), 287-302. | Zbl | MR
[8] and , The least solution for the polynomial interpolation problem, Math. Z. 210 (1992), 347-378. | Zbl | MR
[9] , Complex mean-value interpolation and approximation of holomorphic functions, J. Approx. Theory 91 (1997), 244-278. | Zbl | MR
[10] and , Polynomial interpolation in several variables, Adv. Comput. Math. 12 (2000), 377-410. Multivariate polynomial interpolation. | Zbl | MR
[11] and , On the poisedness of Bojanov-Xu interpolation, J. Approx. Theory 135 (2005), 176-202. | Zbl | MR
[12] and , On the poisedness of Bojanov-Xu interpolation, II, East J. Approx. 11 (2005), 187-220. | Zbl | MR
[13] , “Complex Algebraic Curves”, London Mathematical Society Student Texts, Vol. 23, Cambridge University Press, Cambridge, 1992. | Zbl | MR
[14] , “Multivariate Birkhoff Interpolation”, Lecture Notes in Mathematics, Vol. 1516. ix, Springer-Verlag, 1992. | Zbl | MR
[15] , Multivariate Hermite interpolation by algebraic polynomials: A survey, J. Comput. Appl. Math. 122 (2000), 167-201. | Zbl | MR
[16] , and , Gröbner bases of ideals defined by functionals with an application to ideals of projective points, Appl. Algebra Engrg. Comm. Comput. 4 (1993), 103-145. | Zbl | MR
[17] , Hermite interpolation in several variables using ideal-theoretic methods, In: “Constructive Theory of Functions of Several Variables”, Proc. Conf., Math. Res. Inst., Oberwolfach, 1976, Lecture Notes in Math., Vol. 571, Springer, Berlin, 1977, 155-163. | Zbl | MR






