We study nonlinear elliptic equations of the form where the main assumption on and is that there exists a one dimensional solution which solves the equation in all the directions . We show that entire monotone solutions are one dimensional if their level set is assumed to be Lipschitz, flat or bounded from one side by a hyperplane.
@article{ASNSP_2008_5_7_3_369_0,
author = {Savin, Ovidiu},
title = {Entire solutions to a class of fully nonlinear elliptic equations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {369--405},
year = {2008},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 7},
number = {3},
mrnumber = {2466434},
zbl = {1181.35111},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2008_5_7_3_369_0/}
}
TY - JOUR AU - Savin, Ovidiu TI - Entire solutions to a class of fully nonlinear elliptic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 369 EP - 405 VL - 7 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2008_5_7_3_369_0/ LA - en ID - ASNSP_2008_5_7_3_369_0 ER -
%0 Journal Article %A Savin, Ovidiu %T Entire solutions to a class of fully nonlinear elliptic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 369-405 %V 7 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2008_5_7_3_369_0/ %G en %F ASNSP_2008_5_7_3_369_0
Savin, Ovidiu. Entire solutions to a class of fully nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 3, pp. 369-405. https://www.numdam.org/item/ASNSP_2008_5_7_3_369_0/
[1] and , Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739. | Zbl | MR
[2] , and , The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), 1007-1038. | Zbl | MR
[3] , and R., One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (2000), 375-396. | Zbl | MR
[4] and , “Fully Nonlinear Elliptic Equations”, American Mathematical Society, Colloquium Publications 43, Providence, RI, 1995. | Zbl | MR
[5] and , Uniform convergence of a singular perturbation problem, Comm. Pure Appl. Math. 48 (1995), 1-12. | Zbl | MR
[6] and , Phase transitions: uniform regularity of the intermediate layers, J. Reine Angew. Math. 593 (2006), 209-235. | Zbl | MR
[7] and , A Harnack inequality approach to the interior regularity of elliptic equations, Indiana Univ. Math. J. 42 (1993), 145-157. | Zbl | MR
[8] , Convergence problems for functional and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (1978), 131-188. | Zbl | MR
[9] and , Symmetry of global solutions to fully nonlinear equations in 2D, Indiana Univ. Math. J., to appear. | Zbl | MR
[10] and C., On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491. | Zbl | MR
[11] , -convergence to minimal surfaces problem and global solutions of , Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, 223-244, Pitagora, Bologna, 1979. | Zbl | MR
[12] , Regularity of flat level sets for phase transitions, Ann. of Math., to appear. | Zbl
[13] , Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations 32 (2007) 557-578. | Zbl | MR
[14] , and , “Flat Level Set Regularity of -Laplace Phase Transitions”, Mem. Amer. Math. Soc., Vol. 182, 2006. | Zbl | MR





