To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of . Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
@article{ASNSP_2007_5_6_4_631_0,
author = {Manetti, Marco},
title = {Lie description of higher obstructions to deforming submanifolds},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {631--659},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {4},
mrnumber = {2394413},
zbl = {1174.13021},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/}
}
TY - JOUR AU - Manetti, Marco TI - Lie description of higher obstructions to deforming submanifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 631 EP - 659 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/ LA - en ID - ASNSP_2007_5_6_4_631_0 ER -
%0 Journal Article %A Manetti, Marco %T Lie description of higher obstructions to deforming submanifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 631-659 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/ %G en %F ASNSP_2007_5_6_4_631_0
Manetti, Marco. Lie description of higher obstructions to deforming submanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659. https://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/
[1] , “Deformations of Singularities”, Tata Institute of Fundamental Research, Bombay, 1976.
[2] and , The intrinsic normal cone, Invent. Math. 128 (1997), 45-88. | Zbl | MR
[3] , Semi-regularity and de Rham cohomology, Invent. Math. 17 (1972) 51-66. | Zbl | MR
[4] and , A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135-210. arXiv:math.AG/9912245 | Zbl | MR
[5] and , Normal differential operators and deformation theory, In: “Recent progress in intersection theory” (Bologna, 1997), Birkhäuser Boston, 2000, 33-84. arXiv:math.AG/9811171 | Zbl | MR
[6] , Geometry of formal Kuranishi theory. Adv. Math. 198 (2005), 311-365. | Zbl | MR
[7] , , and , Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | Zbl | MR
[8] and , “The Geometry of Four-Manifolds”, Oxford, University Press, 1990. | Zbl | MR
[9] , Obstruction primaire à la déformation, Sém. Cartan 13 (1960/61), Exp. 4. | Zbl | Numdam
[10] and , Obstruction calculus for functors of Artin rings, I. J. Algebra 202 (1998), 541-576. | Zbl | MR
[11] and , structures on mapping cones, Algebra Number Theory 1 (2007), 301-330. | Zbl | MR
[12] , Deformation theory, homological algebra and mirror symmetry, In: “Geometry and Physics of Branes” (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, 2003, 121-209. | MR
[13] and , The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. | Zbl | MR | Numdam
[14] and , The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), 337-367. | Zbl | MR
[15] and , Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. | Zbl | MR
[16] and , Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87-103. | Zbl | MR
[17] , “Residues and Duality”, Springer-Verlag, L.N.M., Vol. 20, 1966. | Zbl | MR
[18] , “Differential Graded Lie Algebras and Deformations of Holomorphic Maps”, PhD thesis, 2006, arXiv:math.AG/0701091 | Zbl
[19] , “Lie Algebras”, Wiley & Sons, 1962. | Zbl
[20] , Unobstructed deformations - a remark on a paper of Z. Ran, J. Algebraic Geom. 1 (1992), 183-190. | Zbl | MR
[21] , “Differential Geometry of Complex Vector Bundles”, Princeton, Univ. Press, 1987. | Zbl | MR
[22] and , A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | Zbl | MR
[23] , “Rational curves on algebraic varieties”, Springer-Verlag, Ergebnisse Vol. 32, 1996. | Zbl
[24] , Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216. arXiv:q-alg/9709040 | Zbl | MR
[25] , Deformation theory via differential graded Lie algebras, In: “Seminari di Geometria Algebrica 1998-1999”, Scuola Normale Superiore, 1999. arXiv:math.AG/0507284 | MR
[26] , Extended deformation functors, Int. Math. Res. Not. 14 (2002), 719-756. arXiv:math.AG/9910071 | Zbl | MR
[27] , Cohomological constraint to deformations of compact Kähler manifolds, Adv. Math. 186 (2004), 125-142. | Zbl | MR
[28] , Lectures on deformations on complex manifolds, Rend. Mat. Appl. 24 (2004), 1-183. arXiv:math.AG/0507286 | Zbl | MR
[29] , Deformations of complex spaces, Uspekhi Mat. Nauk. 31:3 (1976), 129-194. Transl. Russian Math. Surveys 31:3 (1976), 129-197. | Zbl | MR
[30] , Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191-198. | Zbl | MR
[31] , Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | Zbl | MR
[32] and , Deformation Theory and Rational Homotopy Type, preprint, 1979.
[33] , Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl. 23 (1944), 149-181. | Zbl | MR
[34] , “Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan”, Springer-Verlag, Lecture Notes in Mathematics Vol. 1025, 1983. | Zbl | MR
[35] , Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: “Complex Projective Geometry” (Trieste, 1989/Bergen, 1989), London Math. Soc., Lecture Note Ser. Vol. 179, 1992, 294-303. | Zbl | MR





