In 1955, Roth established that if is an irrational number such that there are a positive real number and infinitely many rational numbers with and , then is transcendental. A few years later, Cugiani obtained the same conclusion with replaced by a function that decreases very slowly to zero, provided that the sequence of rational solutions to is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it to simultaneous approximation.
@article{ASNSP_2007_5_6_3_477_0,
author = {Bugeaud, Yann},
title = {Extensions of the {Cugiani-Mahler} theorem},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {477--498},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {3},
mrnumber = {2370270},
zbl = {1139.11032},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_3_477_0/}
}
TY - JOUR AU - Bugeaud, Yann TI - Extensions of the Cugiani-Mahler theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 477 EP - 498 VL - 6 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_3_477_0/ LA - en ID - ASNSP_2007_5_6_3_477_0 ER -
Bugeaud, Yann. Extensions of the Cugiani-Mahler theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 477-498. https://www.numdam.org/item/ASNSP_2007_5_6_3_477_0/
[1] and , On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1-20. | Zbl | MR
[2] and , On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math. 165 (2007), 547-565. | Zbl | MR
[3] , et , Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris 339 (2004), 11-14. | Zbl | MR
[4] , Nouveaux résultats de transcendance de réels à développements non aléatoire, Gaz. Math. 84 (2000), 19-34. | MR
[5] , On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), 97-112. | Zbl | MR
[6] , On the best approximation of zero by values of integral polynomials, Acta Arith. 53 (1989), 17-28 (in Russian). | Zbl | MR
[7] and , “Heights in Diophantine Geometry”, New mathematical monographs 4, Cambridge University Press, 2006. | Zbl | MR
[8] and , Some quantitative results related to Roth's theorem, J. Aust. Math. Soc. 45 (1988), 233-248. | Zbl | MR
[9] and , On two notions of complexity of algebraic numbers, preprint available at http://arxiv.org/pdf/0709.1560. | Zbl | MR
[10] , Sull'approssimazione di numeri algebrici mediante razionali, In: “Collectanea Mathematica”, Pubblicazioni dell'Istituto di Matematica dell'Università di Milano 169, C. Tanburini (ed.), Milano, 1958, pages 5.
[11] , Sulla approssimabilità dei numeri algebrici mediante numeri razionali, Ann. Mat. Pura Appl. 48 (1959), 135-145. | Zbl | MR
[12] , Sull'approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato, Boll. Unione Mat. Ital. 14 (1959), 151-162. | Zbl | MR
[13] and , Rational approximations to algebraic numbers, Mathematika 2 (1955), 160-167. | Zbl | MR
[14] , The number of algebraic numbers of given degree approximating a given algebraic number. In: “Analytic Number Theory” (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997, 53-83. | Zbl | MR
[15] and , A quantitative version of the Absolute Subspace Theorem, J. Reine Angew. Math. 548 (2002), 21-127. | Zbl | MR
[16] , Sur l'approximation des incommensurables et des séries trigonométriques, C. R. Acad. Sci. Paris 139 (1904), 1019-1021. | JFM
[17] and , Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161. | Zbl | MR
[18] , The classification of rational approximations, Proc. London Math. Soc. 17 (1918), 247-258. | MR | JFM
[19] , On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith. 89 (1999), 97-122. | Zbl | MR
[20] , On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122-124. | Zbl | MR
[21] , “Lectures on Diophantine Approximation, Part 1: -Adic Numbers and Roth’s Theorem”, University of Notre Dame, Ann Arbor, 1961. | Zbl | MR
[22] , Une généralisation d'un théorème de Cugiani-Mahler, Acta Arith. 22 (1972), 57-67. | Zbl | MR
[23] , Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131. | Zbl | MR
[24] , Approssimabilità di irrazionali -adici mediante numeri razionali, Ist. Lombardo Accad. Sci. Lett. Rend. A 98 (1964), 691-708. | Zbl | MR
[25] , Approssimabilità di irrazionali -adici mediante numeri razionali. II, Boll. Unione Mat. Ital. 20 (1965), 232-244. | Zbl | MR
[26] , Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168. | Zbl | MR
[27] , Über simultane Approximation algebraischer Zahlen durch Rationale, Acta Math. 114 (1965) 159-206. | Zbl | MR
[28] , On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50. | Zbl | MR
[29] , Simultaneous approximations to algebraic numbers by rationals, Acta Math. 125 (1970), 189-201. | Zbl | MR
[30] , Norm form equations, Ann. of Math. 96 (1972), 526-551. | Zbl | MR
[31] , “Diophantine Approximation”, Lecture Notes in Mathematics, Vol. 785, Springer, 1980. | Zbl | MR
[32] , The subspace theorem in Diophantine approximation, Compositio Math. 69 (1989), 121-173. | Zbl | MR | Numdam
[33] , “Algebraic numbers and Diophantine Approximation”, Pure and Applied Mathematics, Vol. 26, Marcel Dekker, Inc., New York, 1974. | Zbl | MR
[34] , “Diophantine Approximation on Linear Algebraic Groups, Transcendence Properties of the Exponential Function in Several Variables”, Grundlehren der Mathematischen Wissenschaften, Vol. 326, Springer-Verlag, Berlin, 2000. | Zbl | MR






