We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a -cocycle of a -complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates the link between this new representation (first introduced in [16]) and the classical representation of a free group automorphism by a graph-map [2].
@article{ASNSP_2007_5_6_3_405_0,
author = {Gautero, Fran\c{c}ois},
title = {Combinatorial mapping-torus, branched surfaces and free group automorphisms},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {405--440},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {3},
mrnumber = {2370267},
zbl = {1173.20017},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_3_405_0/}
}
TY - JOUR AU - Gautero, François TI - Combinatorial mapping-torus, branched surfaces and free group automorphisms JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 405 EP - 440 VL - 6 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_3_405_0/ LA - en ID - ASNSP_2007_5_6_3_405_0 ER -
%0 Journal Article %A Gautero, François %T Combinatorial mapping-torus, branched surfaces and free group automorphisms %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 405-440 %V 6 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2007_5_6_3_405_0/ %G en %F ASNSP_2007_5_6_3_405_0
Gautero, François. Combinatorial mapping-torus, branched surfaces and free group automorphisms. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 3, pp. 405-440. https://www.numdam.org/item/ASNSP_2007_5_6_3_405_0/
[1] , and , The Tits alternative for : Dynamics of exponentially growing free group automorphisms, Ann. of Math. 151 (2000), 517-623. | Zbl | MR
[2] and , Train-tracks and free group-automorphisms, Ann. of Math. 135 (1992), 1-52. | Zbl | MR
[3] and , Train-tracks for surface homeomorphisms, Topology 34 (1995), 109-140. | Zbl | MR
[4] and , A finite graphic calculus for -manifolds, Manuscripta Math. 88 (1995), 291-310. | Zbl | MR
[5] and , “Branched Standard Spines of -Manifolds", Lectures Notes in Mathematics, 1653, Springer, Berlin, 1997. | Zbl | MR
[6] and , CAT and CAT dimensions of torsion free hyperbolic groups, to appear in Comment. Math. Helv. | Zbl | MR
[7] , An imbedding theorem for connected -manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965), 559-566. | Zbl | MR
[8] and “Automorphisms of Surfaces After Nielsen and Thurston", London Mathematical Society Student Texts 9, Cambridge University Press, Cambridge, 1988. | Zbl | MR
[9] , Branched surfaces and attractors I: Dynamic branched surfaces, Trans. Amer. Math. Soc. 336 (1993), 759-784. | Zbl | MR
[10] , and , “Surfaces and Planar Discontinuous Groups", Lecture Notes in Mathematics 835, Springer-Verlag, 1980. | Zbl | MR
[11] and , Combinatorial group theory and fundamental groups, In: “Algebra VII”, Encyclopaedia Math. Sci., Vol. 58, Springer, Berlin, 1993, 1-166. | Zbl | MR
[12] and , Irreducible automorphisms of growth rate one, J. Pure Appl. Algebra 88 (1993), 51-62. | Zbl | MR
[13] , and , “Travaux de Thurston sur les Surfaces", Astérique 66-67, 1979. | Zbl | MR | Numdam
[14] , “Quelques Aspects Géométriques et Dynamiques du Mapping-Class Group”, PhD dissertation, Université de Nice, Sophia Antipolis, 1998.
[15] , , and , An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998), 425-452. | Zbl | MR
[16] , Dynamical -complexes, Geom. Dedicata 88 (2001), 283-319. | Zbl | MR
[17] , Cross-sections to semi-flows on -complexes, Ergod. Theory Dyn. Syst. 23 (2003), 143-174. | Zbl | MR
[18] , Geometric automorphisms of a free group of rank at least three are rare, Proc. Amer. Math. Soc. 89 (1983), 27-31. | Zbl | MR
[19] , Core and intersection number for group action on trees, Ann. Sci. Ecole Norm. Sup. 38 (2005), 847-888. | Zbl | MR | Numdam
[20] and , Parageometric outer automorphisms of free groups, Trans. Amer. Math. Soc. 359 (2007), 3153-3183. | Zbl | MR
[21] , On the conjugacy problem for automorphisms of free groups, With an addendum by the author, Topology 35 (1996), 779-808. | Zbl | MR
[22] and , The set of train-track representatives of an irreducible free group automorphisms is contractible, http://www.crm.es/Publications/Preprints04.htm (2004).
[23] and , Edge-transitive graph automorphisms and periodic surface homeomorphisms, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1803-1813. | Zbl | MR
[24] , Structure and conjugacy for automorphisms of free groups I, II, Max-Planck-Institut für Mathematik, Preprint Series 130 (2000) and 4 (2001).
[25] , Special spines of piecewise linear manifolds, Math. USSR Sb. 21 (1973). | Zbl
[26] and , “Combinatorics of Train-Tracks", Annals of Mathematical Studies 125, Princeton University Press, 1991. | Zbl | MR
[27] , Topologically unrealizable automorphisms of free groups, Proc. Amer. Math. Soc. 84 (1982), 21-24. | Zbl | MR
[28] , Topology of finite graphs, Invent. Math. 71 (1983), 551-565. | Zbl | MR
[29] , Expanding attractors, Inst. Hautes Étud. Sci. Publ. Math. 43 (1974), 169-203. | Zbl | MR | Numdam






