Let be an open set of a Stein manifold of dimension such that for . We prove that is Stein if and only if every topologically trivial holomorphic line bundle on is associated to some Cartier divisor on .
@article{ASNSP_2007_5_6_2_323_0,
author = {Abe, Makoto},
title = {Holomorphic line bundles and divisors on a domain of a {Stein} manifold},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {323--330},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {2},
mrnumber = {2352521},
zbl = {1142.32007},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_2_323_0/}
}
TY - JOUR AU - Abe, Makoto TI - Holomorphic line bundles and divisors on a domain of a Stein manifold JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 323 EP - 330 VL - 6 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_2_323_0/ LA - en ID - ASNSP_2007_5_6_2_323_0 ER -
%0 Journal Article %A Abe, Makoto %T Holomorphic line bundles and divisors on a domain of a Stein manifold %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 323-330 %V 6 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2007_5_6_2_323_0/ %G en %F ASNSP_2007_5_6_2_323_0
Abe, Makoto. Holomorphic line bundles and divisors on a domain of a Stein manifold. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 2, pp. 323-330. https://www.numdam.org/item/ASNSP_2007_5_6_2_323_0/
[1] , Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math. 83 (2004), 269-272. | Zbl | MR
[2] and , Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | Zbl | MR | Numdam
[3] , Finitezza e annullamento di gruppi di coomologia su uno spazio complesso, Boll. Un. Mat. Ital. B (6) 1 (1982), 131-142. | Zbl | MR
[4] , Cousin I condition and Stein spaces, Complex Var. Theory Appl. 50 (2005), 23-25. | Zbl | MR
[5] and , Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123. | Zbl | MR
[6] and , “Analytische Stellenalgebren”, Grundl. Math. Wiss., Vol. 176, Springer, Heidelberg, 1971. | Zbl | MR
[7] and , “Theory of Stein Spaces”, Grundl. Math. Wiss., Vol. 236, Springer, Berlin-Heidelberg-New York, 1979, Translated by A. Huckleberry. | Zbl | MR
[8] and , “Coherent Analytic Sheaves”, Grundl. Math. Wiss., Vol. 265, Springer, Berlin-Heidelberg-New York-Tokyo, 1984. | Zbl | MR
[9] , “Introduction to Holomorphic Functions of Several Variables”, Vol. 3, Wadsworth, Belmont, 1990. | Zbl
[10] and , Two dimensional complex manifold with vanishing cohomology set, Math. Ann. 204 (1973), 1-12. | Zbl | MR
[11] , On sheaf cohomology and envelopes of holomorphy, Ann. of Math. 84 (1966), 102-118. | Zbl | MR
[12] and , The cohomology of an open subspace of a Stein space, J. Reine Angew. Math. 318 (1980), 32-35. | Zbl | MR
[13] , Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann. 164 (1966), 272-279. | Zbl | MR
[14] , Quelques problèmes globaux relatifs aux variétés de Stein, In: “Colloque sur les fonctions de plusieurs variables tenu à Bruxelles du 11 au 14 Mars 1953”, Centre belge de Recherches mathématiques, Librairie universitaire, Louvain, 1954, 57-68. | Zbl | MR
[15] , “Algèbre Locale. Multiplicités”, 3rd ed., Lecture Notes in Math., Vol. 11, Springer, Berlin-Heidelberg-New York, 1975. | Zbl
[16] , Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z. 102 (1967), 17-29. | Zbl | MR
[17] , Analytic sheaf cohomology groups of dimension of -dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94. | Zbl | MR





