We will consider the following problem
@article{ASNSP_2007_5_6_1_159_0,
author = {Abdellaoui, Boumediene and Peral, Ireneo},
title = {The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: {The} optimal power},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {159--183},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {1},
mrnumber = {2341519},
zbl = {1181.35080},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_1_159_0/}
}
TY - JOUR
AU - Abdellaoui, Boumediene
AU - Peral, Ireneo
TI - The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
SP - 159
EP - 183
VL - 6
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2007_5_6_1_159_0/
LA - en
ID - ASNSP_2007_5_6_1_159_0
ER -
%0 Journal Article
%A Abdellaoui, Boumediene
%A Peral, Ireneo
%T The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2007
%P 159-183
%V 6
%N 1
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2007_5_6_1_159_0/
%G en
%F ASNSP_2007_5_6_1_159_0
Abdellaoui, Boumediene; Peral, Ireneo. The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 159-183. https://www.numdam.org/item/ASNSP_2007_5_6_1_159_0/
[1] and , Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinburgh 132A (2002), 1-24. | Zbl | MR
[2] and , A note on a critical problem with natural growth in the gradient, J. Eur. Math. Soc. Sect. A 8 (2006), 157-170. | Zbl | MR | EuDML
[3] and , Nonexistence results for quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities, Commun. Pure Appl. Anal. 2 (2003), 539-566. | Zbl | MR
[4] , and , Some remarks on elliptic problems with critical growth on the gradient, J. Differential Equations 222 (2006), 21-62. | MR | Zbl
[5] , and , Some improved Caffarelli-Kohn-Nirenberg inequalities, Cal. Var. Partial Differential Equations 23 (2005), 327-345. | Zbl | MR
[6] and , Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35. | Zbl | MR
[7] , and , Metastability in a flame front evolution equation, Interfaces Free Bound. 3 (2001) 361-392. | Zbl | MR
[8] , and , “A Unified Presentation of Two Existence Results for Problems with Natural Growth”, Research Notes in Mathematics, Vol. 296, 1993, 127-137, Longman. | Zbl | MR
[9] , and , Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997), 203-223. | Zbl | MR
[10] , and , Existence des solutions non bornées pour certains équations quasi-linéaires, Port. Math., 41 (1982), 507-534. | Zbl | MR
[11] , and , A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Cont. Dyn. Syst. 16 (2006), 513-523. | MR
[12] and , Some simple nonlinear PDE's without solution, Boll. Unione. Mat. Ital. Sez. B 8 (1998), 223-262. | Zbl | MR
[13] , and , On a semilinear equation with inverse-square potential, Selecta Math. 11 (2005), 1-7. | Zbl | MR
[14] and , Kato’s inequality when is a measure, C.R. Math. Acad. Sci. Paris 338 (2004), 599-604. | Zbl | MR
[15] , and , First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259-275. | Zbl | MR | Numdam
[16] and , Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000), 1309-1326. | Zbl | MR
[17] , and , Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87-120. | Zbl | MR
[18] , and , Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892. | Zbl
[19] , Schrödinger operators with singular potentials, Israel J. Math. 13 (1972), 135-148. | Zbl
[20] and , Invariant criteria for existence of solutions to second-order quasilinear elliptic equations, Comm. Pure Appl. Math. 31 (1978), 619-645. | Zbl | MR
[21] , “Generalized Solutions of Hamilton-Jacobi Equations”, Pitman Res. Notes Math., Vol. 62, 1982. | Zbl | MR
[22] , L’injection du cone positif de dans est compacte pour tout , J. Math. Pures Appl. 60 (1981) 309-322. | Zbl
[23] “Sobolev Spaces”, Springer Verlag, Berlin, 1985. | MR
[24] and , Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J. Funct. Anal. 203 (2003), 550-568. | Zbl | MR





