We investigate the following quasilinear and singular problem,
@article{ASNSP_2007_5_6_1_117_0,
author = {Giacomoni, Jacques and Schindler, Ian and Tak\'a\v{c}, Peter},
title = {Sobolev versus {H\"older} local minimizers and existence of multiple solutions for a singular quasilinear equation},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {117--158},
year = {2007},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {1},
mrnumber = {2341518},
zbl = {1181.35116},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2007_5_6_1_117_0/}
}
TY - JOUR AU - Giacomoni, Jacques AU - Schindler, Ian AU - Takáč, Peter TI - Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 117 EP - 158 VL - 6 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2007_5_6_1_117_0/ LA - en ID - ASNSP_2007_5_6_1_117_0 ER -
%0 Journal Article %A Giacomoni, Jacques %A Schindler, Ian %A Takáč, Peter %T Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 117-158 %V 6 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2007_5_6_1_117_0/ %G en %F ASNSP_2007_5_6_1_117_0
Giacomoni, Jacques; Schindler, Ian; Takáč, Peter. Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 1, pp. 117-158. https://www.numdam.org/item/ASNSP_2007_5_6_1_117_0/
[1] Adimurthi and J. Giacomoni 8 (2006), 621-656. | Zbl | MR
[2] , and , Combined effects of concave and convexe nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543. | Zbl | MR
[3] , and , Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. | Zbl | MR
[4] and , Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl | MR
[5] , Simplicité et isolation de la première valeur propre du -laplacien avec poids, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 725-728. | Zbl | MR
[6] , “Etude des valeurs propres et de la résonance pour l’opérateur -Laplacien", Thèse de doctorat, Université Libre de Bruxelles, 1988, Brussels.
[7] and , Existence and multiplicity of positive solutions for a singular problem associated to the -Laplacian operator, Electron. J. Differential Equations 132 (2004), 1-15. | Zbl | MR
[8] and , Emden-Fowler equations involving critical exponents, Nonlinear Anal. 10 (1986), 755-776. | Zbl | MR
[9] and , Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597. | Zbl | MR
[10] and , A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. | Zbl | MR
[11] and , Positive solutions of nonlinear elliptic equation involving the critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437-477. | Zbl | MR
[12] and , Minima locaux relatifs à et , C.R. Acad. Sci. Paris, Sér. I-Math. 317 (1993), 465-472. | Zbl
[13] and , On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), 1315-1327. | Zbl | MR
[14] and , A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), 721-746. | Zbl | MR
[15] , and , On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222. | Zbl | MR
[16] , “Nonlinear Functional Analysis”, Springer-Verlag, Berlin-Heidelberg-New York, 1985. | Zbl | MR
[17] and , Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, Sér. I-Math. 305 (1987), 521-524. | Zbl | MR
[18] , and , An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333-1344. | Zbl | MR
[19] , local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. | Zbl | MR
[20] and , Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), 941-957. | Zbl | MR
[21] , and , Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404. | Zbl | MR
[22] and , Multiplicity results for a singular and quasilinear equation, submitted for publication. | Zbl
[23] , “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems”, Annals of Mathematics Studies, Princeton University Press, Princeton, N.J., 1983. | Zbl | MR
[24] and , Global -regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math. 351 (1984), 55-65. | Zbl | MR
[25] and , A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 321-330. | Zbl | MR | Numdam
[26] and , Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy Exponents, Trans. Amer. Math. Soc. 352 (2000), 5703-5743. | Zbl | MR
[27] and , Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902. | Zbl | MR
[28] and , “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, New-York, 1983. | Zbl | MR
[29] , Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations 189 (2003), 487-512. | Zbl | MR
[30] , and , On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 777-813. | Zbl | MR | Numdam
[31] , and , Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations 9 (2004), 197-220. | MR
[32] and , On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730. | Zbl | MR
[33] , Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. | Zbl | MR
[34] , A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092. | Zbl | MR
[35] , On a class of nonlinear second order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. | Zbl | MR
[36] , “Convex Functions, Monotone Operators, and Differentiability”, Lecture notes in Mathematics, Vol. 1364, Springer-Verlag, Berlin, 1993. | Zbl | MR
[37] and , Multiplicity Results in a ball for Laplace equation in a ball with positive nonlinearity, Adv. Differential Equations 7 (2002), 877-896. | Zbl | MR
[38] , Quasilinear elliptic boundary-value problems on unbounded cylinders and a related mountain-pass lemma, Arch. Rational Mech. Anal. 120 (1992), 363-374. | Zbl | MR
[39] , Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964), 247-302. | Zbl | MR
[40] , On the Fredholm alternative for the -Laplacian at the first eigenvalue, Indiana Univ. Math. J. 51 (2002), 187-237. | Zbl | MR
[41] , On the Dirichlet problem for quasilinear equations in domans with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773-817. | Zbl | MR
[42] , Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. | Zbl | MR
[43] , A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202. | Zbl | MR
[44] , and , Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations 176 (2001), 511-531. | Zbl | MR






