We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic -spaces.
@article{ASNSP_2006_5_5_4_549_0,
author = {Rossman, Wayne and Schmitt, Nicholas},
title = {Simultaneous unitarizability of {SL}$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {549--577},
year = {2006},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 5},
number = {4},
zbl = {1150.53021},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2006_5_5_4_549_0/}
}
TY - JOUR
AU - Rossman, Wayne
AU - Schmitt, Nicholas
TI - Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
SP - 549
EP - 577
VL - 5
IS - 4
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2006_5_5_4_549_0/
LA - en
ID - ASNSP_2006_5_5_4_549_0
ER -
%0 Journal Article
%A Rossman, Wayne
%A Schmitt, Nicholas
%T Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2006
%P 549-577
%V 5
%N 4
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2006_5_5_4_549_0/
%G en
%F ASNSP_2006_5_5_4_549_0
Rossman, Wayne; Schmitt, Nicholas. Simultaneous unitarizability of SL$_{\hbox{\textit {n}}}{\mathbb {C}}$-valued maps, and constant mean curvature $k$-noid monodromy. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 4, pp. 549-577. https://www.numdam.org/item/ASNSP_2006_5_5_4_549_0/
[1] , On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures, Asian J. Math 3 (1999), 333-344. | Zbl | MR
[2] , Constant mean curvature surfaces and integrable equations, Russian Math. Surveys 46 (1991), 1-45. | Zbl | MR
[3] and , Construction of non-simply connected CMC surfaces via dressing, J. Math. Soc. Japan 55 (2003), 335-364. | Zbl | MR
[4] , , and , Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668. | Zbl | MR
[5] and , Construction of constant mean curvature trinoids from holomorphic potentials, preprint, 2000. | Zbl
[6] and Unitarization of loop group representations of fundamental groups, preprint, 2005. | Zbl | MR
[7] , Topological components of spaces of representations, Invent. Math. 93 (1988), 557-607. | Zbl | MR
[8] , New surfaces of constant mean curvature, Math. Z. 214 (1993), 527-565. | Zbl | MR
[9] , and , Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero, J. Reine Angew. Math. 564 (2003), 35-61. | Zbl | MR
[10] , and , Coplanar constant mean curvature surfaces, math.DG/0509210, 2005. | Zbl
[11] , Complete constant mean curvature surfaces in Euclidean three space, Ann. of Math. 131 (1990), 239-330. | Zbl | MR
[12] , and , Delaunay ends of constant mean curvature surfaces, preprint, 2006. | Zbl | MR
[13] , and , Dressing CMC n-noids, Math. Z. 246 (2004), 501-519. | Zbl | MR
[14] , , and , Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1-43. | Zbl | MR
[15] , and , The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465-503. | Zbl | MR
[16] and , Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9 (2001), 169-237. | Zbl | MR
[17] , Global solutions of the elliptic 2d periodic Toda lattice, Nonlinearity 7 (1994), 85-108. | Zbl | MR
[18] and , “Loop Groups”, Oxford Science Monographs, Oxford Science Publications, 1988. | Zbl
[19] , An end to end gluing construction for metrics of constant positive scalar curvature, Indiana Univ. Math. J. 52 (2003), 703-726. | Zbl | MR
[20] , CMCLab, http://www.gang.umass.edu/software.
[21] , Constant mean curvature -noids with symmetries, preprint, 2006.
[22] , , and , Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms, J. London Math. Society, to appear. | Zbl
[23] and , Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois. J. Math. 44 (2000), 72-94. | Zbl | MR






