Let and be domains in and an isometry for the Kobayashi or Carathéodory metrics. Suppose that extends as a map to . We then prove that is a CR or anti-CR diffeomorphism. It follows that and must be biholomorphic or anti-biholomorphic.
@article{ASNSP_2006_5_5_3_393_0,
author = {Seshadri, Harish},
title = {On isometries of the carath\'eodory and {Kobayashi} metrics on strongly pseudoconvex domains},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {393--417},
year = {2006},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 5},
number = {3},
mrnumber = {2274785},
zbl = {1170.32309},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2006_5_5_3_393_0/}
}
TY - JOUR AU - Seshadri, Harish TI - On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 393 EP - 417 VL - 5 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2006_5_5_3_393_0/ LA - en ID - ASNSP_2006_5_5_3_393_0 ER -
%0 Journal Article %A Seshadri, Harish %T On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 393-417 %V 5 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2006_5_5_3_393_0/ %G en %F ASNSP_2006_5_5_3_393_0
Seshadri, Harish. On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 3, pp. 393-417. https://www.numdam.org/item/ASNSP_2006_5_5_3_393_0/
[1] and , Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000), 504-533. | Zbl | MR
[2] and , Pseudoconvexity and Gromov hyperbolicity, C. R. Acad. Sci. Paris Sèr. I Math. 328(1999), 597-602. | Zbl | MR
[3] , Attraction des disques analytiques et continuitè höldérienne d'applications holomorphes propres, In: “Topics in Complex Analysis”(Warsaw, 1992), Banach Center Publ., Vol. 31, Polish Acad. Sci., Warsaw, 1995. | Zbl | MR
[4] , and , On the automorphism group of strictly convex domains in , In: “Complex Differential Geometry and Nonlinear Differential Equations” (Brunswick, maine, 1984), Comtemp. Math. Vol. 49, 1986, 19-30. | Zbl | MR
[5] and , On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 (1980), 507-544. | Zbl | MR
[6] and , Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), 1089-1125. | Zbl | MR
[7] and , A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), 835-843. | Zbl | MR
[8] , An elementary proof of Fefferman's theorem, Expo. Math. 10 (1992), 135-149. | Zbl | MR
[9] , and , A note on the Wong-Rosay theorem in complex manifolds, Complex Variables Theory Appl. 47 (2002), 761-768. | Zbl | MR
[10] , Boundary behavior of the Carathèodory and Kobayashi metrics on strongly pseudoconvex domains in with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219-240. | Zbl | MR
[11] , Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), 917-921. | Zbl | MR
[12] and , Deformation of complex structures, estimates for the equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1-86. | Zbl | MR
[13] and , Stability of the Carathèodory and Kobayashi metrics and applications to biholomorphic mappings, In: “Complex Analysis of Several Variables (Madison, Wis., 1982), 77-93, Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984. | Zbl | MR
[14] , Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc. 73 (1967), 347-349. | Zbl | MR
[15] , On the Kobayashi-Royden metric for ellipsoids, Math. Ann. 289 (1991), 55-72. | Zbl | MR
[16] , La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. | Zbl | MR | Numdam
[17] , On iterates of holomorphic maps, Math. Z. 207 (1991), 417-428. | Zbl | MR
[18] and , The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400-416. | Zbl | MR
[19] , and , Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305-338. | Zbl | MR
[20] , On holomorphic maps between domains in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 267-279. | Zbl | MR | Numdam
[21] , A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205-212. | Zbl | MR
[22] , On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644-649. | Zbl
[23] , Holomorphic inequivalence of certain classes of domains in , Mat. Sb. (N.S.) 111(153) (1980), 67-94. | Zbl | MR
[24] and , Asymptotically holomorphic functions and their applications, Math. USSR-Sb. 62 (1992), 541-550. | Zbl | MR
[25] , The scaling method and holomorphic mappings In: “Several Complex Variables and Complex Geometry”, Part 1 (Santa Cruz, CA, 1989), 151-161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991. | Zbl | MR
[26] , Sur une caractèrisation de la boule parmi les domaines de par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble), 29 (1979), 91-97. | Zbl | MR | Numdam
[27] , Boundary regularity of correspondences in , Math. Z. 231 (1999), 253-299. | Zbl | MR
[28] , Complex geodesics and holomorphic maps, In: Symposia Mathematica”, Vol. XXVI, Rome, 1980, 211-230, Academic Press, London-New York, 1982. | Zbl | MR
[29] , Caractérisation des automorphismes analytiques d'un domaine convexe borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 101-104. | Zbl
[30] , On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28. | Zbl | MR
[31] , Characterization of the unit ball in by its automorphism group, Invent. Math. 41 (1977), 253-257. | Zbl | MR
[32] , Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), 587-614. | Zbl | MR






