The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for -closed forms at the critical degree, (Theorem 1.1). Part of Frenkel’s lemma in category is also proved.
@article{ASNSP_2006_5_5_1_21_0,
author = {Chang, Chin-Huei and Lee, Hsuan-Pei},
title = {Hartogs theorem for forms : solvability of {Cauchy-Riemann} operator at critical degree},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {21--37},
year = {2006},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 5},
number = {1},
mrnumber = {2240164},
zbl = {1170.32303},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2006_5_5_1_21_0/}
}
TY - JOUR AU - Chang, Chin-Huei AU - Lee, Hsuan-Pei TI - Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 21 EP - 37 VL - 5 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2006_5_5_1_21_0/ LA - en ID - ASNSP_2006_5_5_1_21_0 ER -
%0 Journal Article %A Chang, Chin-Huei %A Lee, Hsuan-Pei %T Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 21-37 %V 5 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2006_5_5_1_21_0/ %G en %F ASNSP_2006_5_5_1_21_0
Chang, Chin-Huei; Lee, Hsuan-Pei. Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 1, pp. 21-37. https://www.numdam.org/item/ASNSP_2006_5_5_1_21_0/
[1] and , Semi-global solution of with bounds on strongly pseudoconvex real hypersurfaces in , Publ. Mat. 43 (1999), 535-570. | Zbl | MR
[2] and , Hartogs theorem for CR functions, Bull. Inst. Math. Acad. Sinica 32 (2004), 221-227. | Zbl | MR
[3] , Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. | Zbl | MR
[4] , Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1-88. | MR | JFM
[5] and , Fundamental solutions in complex analysis, I, II, Duke Math. J. 46 (1979), 253-340. | Zbl | MR
[6] , The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130. | Zbl | MR
[7] , “Notions of Convexity”, Progress in Math., Vol. 127, Birkhäuser, 1994. | Zbl | MR
[8] , “Function Theory of Several Complex Variables”, 2ed. Wadsworth Books/Cole Mathematics Series, 1992. | Zbl | MR
[9] , “Several Complex Variables”, Chicago Lecture Notes in Math., The University of Chicago Press, 1971. | Zbl | MR
[10] , “Holomorphic Functions and Integral Representations in Several Complex Variables”, Springer-Verlag, New York, 1986. | Zbl | MR
[11] , Some application of Cauchy-Fantappié forms to (local) problems in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 225-243. | Zbl | MR | Numdam
[12] , “Techniques of Extension of Analytic Objects”, Lecture Notes in Pure and Applied Math., Vol. 8, Marcel Dekker, 1974. | Zbl | MR
[13] and , “Gap-sheaves and Extension of Coherent Analytic Subsheaves”, Lecture Notes in Mathematics, Vol. 172, Springer-Verlag, 1971. | Zbl | MR
[14] , On the local solution of the tangential Cauchy-Riemann equations, Nonlinear Anal. 6 (1989), 167-182. | Zbl | MR | Numdam





