We consider a class of stationary viscous Hamilton-Jacobi equations aswhere , is a bounded and uniformly elliptic matrix and is convex in and grows at most like , with and . Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate, i.e. , for a certain (optimal) exponent . This completes the recent results in [15], where the existence of at least one solution in this class has been proved.
@article{ASNSP_2006_5_5_1_107_0,
author = {Barles, Guy and Porretta, Alessio},
title = {Uniqueness for unbounded solutions to stationary viscous {Hamilton-Jacobi} equations},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {107--136},
year = {2006},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 5},
number = {1},
mrnumber = {2240185},
zbl = {1150.35030},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/}
}
TY - JOUR AU - Barles, Guy AU - Porretta, Alessio TI - Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 SP - 107 EP - 136 VL - 5 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/ LA - en ID - ASNSP_2006_5_5_1_107_0 ER -
%0 Journal Article %A Barles, Guy %A Porretta, Alessio %T Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2006 %P 107-136 %V 5 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/ %G en %F ASNSP_2006_5_5_1_107_0
Barles, Guy; Porretta, Alessio. Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 1, pp. 107-136. https://www.numdam.org/item/ASNSP_2006_5_5_1_107_0/
[1] and , Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23-35. | Zbl | MR
[2] and , Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Ration. Mech. Anal. 133 (1995), 77-101. | Zbl | MR
[3] , , and , Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 381-404. | Zbl | MR | Numdam
[4] , , , , Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in . A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var. 8 (2002), 239-272. | Zbl | MR | Numdam
[5] , , and , Uniqueness results for nonlinear elliptic equations with a lower order term, Nonlinear Anal. 63 (2005), 153-170. | Zbl | MR
[6] , , and , Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215-237. | Zbl | MR
[7] and , Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655. | Zbl | MR
[8] , and , estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326-333. | Zbl | MR
[9] , and , Existence de solutions faibles pour des équations elliptiques quasi-linèaires à croissance quadratique, In: “Nonlinear Partial Differential Equations and their Applications”. College de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math. 84, Pitman, Boston, Mass. - London, 1983, 19-73. | Zbl | MR
[10] , and , Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. (4) 181 (2002), 407-426. | Zbl | MR
[11] , , and , Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741-808. | Zbl | MR | Numdam
[12] and , On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), 321-366. | Zbl | MR
[13] and , Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, In: “Equations aux Dérivées Partielles et Applications”, Gauthier-Villars, Ed. Sci. Méd. Elsevier, Paris, 1998, 497-515. | Zbl | MR
[14] , and , Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 23-28. | Zbl | MR
[15] , and , Elliptic equations with superlinear gradient dependent terms, in preparation.
[16] , and , Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87-120. | Zbl | MR
[17] , Résolution de problèmes elliptiques quasilinèaires, Arch. Ration. Mech. Anal. 74 (1980), 335-353. | Zbl
[18] , Quelques remarques sur les problèmes elliptiques quasilinèaires du second ordre, J. Anal. Math. 45 (1985), 234-254. | Zbl | MR
[19] and , Solutions renormalisées d'équations elliptiques non linéaires, unpublished paper.
[20] , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. | Zbl | MR | Numdam






