Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on , we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive -semigroups on for all and for every domain . For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.
Haller-Dintelmann, Robert 1 ; Wiedl, Julian 1
@article{ASNSP_2005_5_4_4_729_0,
author = {Haller-Dintelmann, Robert and Wiedl, Julian},
title = {Kolmogorov kernel estimates for the {Ornstein-Uhlenbeck} operator},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {729--748},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {4},
mrnumber = {2207741},
zbl = {1171.47302},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_4_729_0/}
}
TY - JOUR AU - Haller-Dintelmann, Robert AU - Wiedl, Julian TI - Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 729 EP - 748 VL - 4 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_4_729_0/ LA - en ID - ASNSP_2005_5_4_4_729_0 ER -
%0 Journal Article %A Haller-Dintelmann, Robert %A Wiedl, Julian %T Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 729-748 %V 4 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_4_729_0/ %G en %F ASNSP_2005_5_4_4_729_0
Haller-Dintelmann, Robert; Wiedl, Julian. Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 729-748. https://www.numdam.org/item/ASNSP_2005_5_4_4_729_0/
[1] , “Sobolev Spaces”, Academic Press, New York, 1978. | MR
[2] and , Wiener regularity and heat semigroups on spaces of continuous functions, In: “Topics in Nonlinear Analysis”, Vol. 35, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 1999, 29-49. | Zbl | MR
[3] and , Analytic methods for markov semigroups, preprint. | MR
[4] and , Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations 198 (2004), 35-52. | Zbl | MR
[5] and , “Mathematical Analysis and Numerical Methods for Science and Technology”, Vol. 1, Springer-Verlag, Berlin, 1990. | Zbl | MR
[6] and , -properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126-146. | Zbl | MR
[7] and , “One-Parameter Semigroups for Linear Evolution Equations”, Vol. 194, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. | Zbl | MR
[8] , and , Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329-353. | Zbl | MR
[9] , and , -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, 2005, preprint. | MR
[10] , , and , The Ornstein-Uhlenbeck semigroup in exterior domains, Arch. Math. (Basel), to appear. | Zbl | MR
[11] and , “Elliptic Partial Differential Operators of Second Order. Second Edition”, Vol. 224, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, Berlin, 1983. | Zbl | MR
[12] and , Functional calculi for linear operators in vector-valued -spaces via the transference principle, Adv. Differential Equations 3 (1998), 847-872. | Zbl | MR
[13] - , The Navier-Stokes equations in with linearly growing initial data, Arch. Ration. Mech. Anal. 175 (2005), 269-285. | Zbl | MR
[14] , An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal. 150 (1999), 307-348. | Zbl | MR
[15] , -spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 97-124. | Zbl | MR | Numdam
[16] , and , Spectrum of Ornstein-Uhlenbeck operators in spaces with respect to invariant measures, J. Funct. Anal. 196 (2002), 40-60. | Zbl | MR
[17] , and , -estimates for a class of elliptic operators with unbounded coefficients in , Houston Math. J. 31 (2005), 605-620. | Zbl | MR
[18] , , and , The domain of the Ornstein-Uhlenbeck operator on an -space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 471-485. | Zbl | MR | Numdam
[19] , “Banach Lattices and Positive Operators”, Vol. 215 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1974. | Zbl | MR





