Some known localization results for hyperconvexity, tautness or -completeness of bounded domains in are extended to unbounded open sets in .
Nikolov, Nikolai 1 ; Pflug, Peter 2
@article{ASNSP_2005_5_4_4_601_0,
author = {Nikolov, Nikolai and Pflug, Peter},
title = {Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {601--618},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {4},
mrnumber = {2207736},
zbl = {1170.32302},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/}
}
TY - JOUR
AU - Nikolov, Nikolai
AU - Pflug, Peter
TI - Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
SP - 601
EP - 618
VL - 4
IS - 4
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
LA - en
ID - ASNSP_2005_5_4_4_601_0
ER -
%0 Journal Article
%A Nikolov, Nikolai
%A Pflug, Peter
%T Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 601-618
%V 4
%N 4
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
%G en
%F ASNSP_2005_5_4_4_601_0
Nikolov, Nikolai; Pflug, Peter. Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 4, pp. 601-618. https://www.numdam.org/item/ASNSP_2005_5_4_4_601_0/
[1] , A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117 (1993), 789-793. | Zbl | MR
[2] , The complex Monge-Ampère operator in pluripotential theory, Preprint (2004) (http://www.im.uj.edu.pl).
[3] and , An embedding of in with hyperbolic complements, Math. Ann. 306 (1996), 539-546. | Zbl | MR
[4] , Bergman completeness of hyperconvex manifolds, Nagoya Math. J. 175 (2004), 165-170. | Zbl | MR
[5] and , The Bergman metric on a Stein manifold with a bouded plurisubharminc function, Trans. Amer. Math. Soc. 354 (2002), 2997-3009. | Zbl | MR
[6] , À propos des variétés hyperboliques completes, C. R. Acad. Sci. Paris 280 (1975), 1071-1075. | Zbl | MR
[7] , Interpolation by holomorphic automorphisms and embeddings in , J. Geom. Anal. 9 (1999), 93-117. | Zbl | MR
[8] , Tautness and complete hyperbolicity of domains in , Proc. Amer. Math. Soc. 127 (1999), 105-116. | Zbl | MR
[9] and , Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. | Zbl | MR
[10] and , Remarks on the pluricomplex Green function, Indiana Univ. Math. J. 44 (1995), 535-543. | Zbl | MR
[11] and , “Invariant Distances and Metrics in Complex Analysis”, de Gruyter, 1993. | Zbl | MR
[12] and , Invariant distances and metrics in complex analysis-revisited, Dissertationes Math. 430 (2005), 1-192. | Zbl | MR
[13] , and , On Bergman completeness of non-hyperconvex domains, Univ. Iagel. Acta Math. 38 (2000), 169-184. | Zbl | MR
[14] , “Tautness and Kobayashi Hyperbolicty”, Ph. D. thesis, Oldenburg, 2003. | Zbl
[15] , A class of hyperbolic manifolds, In: “Recent Developments in Several Complex Variables”, J. E. Fornaess (ed.), Ann. Math. Studies 100 (1981), 347-372. | Zbl | MR
[16] and , On the complete hyperbolicity and the tautness of the Hartogs domains, Internat. J. Math. 11 (2000), 103-111. | Zbl | MR
[17] and , -extension property without hyperbolicity, Indiana Univ. Math. J. 47 (1998), 1125-1130. | Zbl | MR
[18] and , Tautness of locally taut domains in complex spaces, Ann. Polon. Math. 83 (2004), 141-148. | Zbl | MR
[19] ,Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, Teor. Funkcii, Funkcional. Anal. i Prilozen. 19 (1974), 133-157. | MR
[20] , Regularity properties of the Azukawa metric, J. Math. Soc. Japan 52 (2000), 899-914. | Zbl | MR





