Let and be hyperkähler manifolds. We study stationary quaternionic maps between and . We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in . We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded minimal in the hyperkähler surface studied by Atiyah-Hitchin.
Chen, Jingyi 1 ; Li, Jiayu 2
@article{ASNSP_2005_5_4_3_375_0,
author = {Chen, Jingyi and Li, Jiayu},
title = {Quaternionic maps and minimal surfaces},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {375--388},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {3},
mrnumber = {2185957},
zbl = {1170.53312},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_3_375_0/}
}
TY - JOUR AU - Chen, Jingyi AU - Li, Jiayu TI - Quaternionic maps and minimal surfaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 375 EP - 388 VL - 4 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_3_375_0/ LA - en ID - ASNSP_2005_5_4_3_375_0 ER -
%0 Journal Article %A Chen, Jingyi %A Li, Jiayu %T Quaternionic maps and minimal surfaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 375-388 %V 4 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_3_375_0/ %G en %F ASNSP_2005_5_4_3_375_0
Chen, Jingyi; Li, Jiayu. Quaternionic maps and minimal surfaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 3, pp. 375-388. https://www.numdam.org/item/ASNSP_2005_5_4_3_375_0/
[1] and , A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. 184 (2005), 53-74. | MR
[2] and , Topological Sigma-Models in Four Dimensions and Triholomorphic Maps, Nucl. Phys. B416 (1994), 255-300. | Zbl | MR
[3] and , “The geometry and dynamics of magnetic monopoles”, Princeton University Press 1988. | Zbl | MR
[4] , On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. | Zbl | MR
[5] , Complex anti-self-dual connections on product of Calabi-Yau surfaces and triholomorphic curves, Comm. Math. Phys. 201 (1999), 201-247. | Zbl | MR
[6] and , Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355-384. | Zbl | MR
[7] and , Mean curvature flow of surface in -manifolds, Adv. Math. 163 (2001), 287-309. | Zbl | MR
[8] and , Minimal surfaces in Riemannian 4-manifolds, Geom. Funct. Anal. 7 (1997), 873-916. | Zbl | MR
[9] and , Minimal surfaces by moving frames, Amer. J. Math. 105 (1983), 59-83. | Zbl | MR
[10] and , Gauge theory in higher dimensions, In: “The Geometric Universe: Science, Geometry and the work of Roger Penrose”, S. A. Huggett et al. (eds), Oxford Univ. Press, 1998, pp. 31-47. | Zbl | MR
[11] , Partial regularity for stationary harmonic maps, Arch. Rat. Mech. Anal. 116 (1991), 101-112. | Zbl
[12] and , Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640. | Zbl | MR | Numdam
[13] , and , Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves, Nucl. Phys. B521 (1998), 419-443. | Zbl | MR
[14] , Hypercomplex algebraic geometry, Quart. J. Math. 49 (1998), 129-162. | Zbl | MR
[15] , Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. Math. 149 (1999), 785-829. | Zbl | MR
[16] and , A blow-up formula for stationary harmonic maps, Internat. Math. Res. Notices 14 (1998), 735-755. | Zbl | MR
[17] and , Yang-Mills fields on quaternionic spaces. Nonlinearity 1 (1988), 517-530. | Zbl | MR
[18] and , -instantons on and stable vector bundles. Math. Z. 232 (1999), 721-737. | Zbl | MR
[19] and , Duality and Yang-Mills fields on quaternionic Kähler manifolds. J. Math. Phys. 32 (1991), 1263-1268. | Zbl | MR
[20] , f-structures, f-twistor spaces and harmonic maps, In: “Geometry Seminar ‘Luigi Bianchi', II - 1984”, E. Vesentini (ed.), Lect. Nothes Math. 1164, Springer, Berlin, 1985, 85-159. | Zbl | MR
[21] , Harmonic and holomorphic maps, In: “Geometry Seminar ‘Luigi Bianchi', II - 1984”, E. Vesentini (ed.), Lect. Notes Math. 1164, Springer, Berlin, 1985, 161-224. | Zbl | MR
[22] , Analytic aspects of harmonic maps, In: “Seminar on nonlinear Partial Differential equations”, S. S. Chern (ed.), M.S.R.I. Publications 2, Springer-Verlag, New-York, 1984, 321-358. | Zbl | MR
[23] , Rectifiability of the singular set of energy minimizing maps, Calc. Var. Partial Differential Equations 3 (1995), 1-65. | Zbl | MR
[24] , Quaternionic Kähler Geometry and the Fundamental 4-form, In: “Proc. Curvature Geom. workshop”, C. T. J. Dodson (ed.), ULDM Publications Lancaster, 1989, 165-173. | Zbl | MR
[25] and , The existence of minimal immersions of -spheres, Ann. of Math. (2) 113 (1981), 1-24. | Zbl | MR
[26] , A Dolbeault-type double complex on quaternionic manifolds, Asian J. Math. 6 (2002), 253-275. | Zbl | MR





