We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the -energy and the parameter . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
Bethuel, Fabrice 1 ; Orlandi, Giandomenico 2 ; Smets, Didier 3
@article{ASNSP_2005_5_4_2_319_0,
author = {Bethuel, Fabrice and Orlandi, Giandomenico and Smets, Didier},
title = {Improved estimates for the {Ginzburg-Landau} equation : the elliptic case},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {319--355},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {2},
mrnumber = {2163559},
zbl = {1121.35052},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/}
}
TY - JOUR AU - Bethuel, Fabrice AU - Orlandi, Giandomenico AU - Smets, Didier TI - Improved estimates for the Ginzburg-Landau equation : the elliptic case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 319 EP - 355 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/ LA - en ID - ASNSP_2005_5_4_2_319_0 ER -
%0 Journal Article %A Bethuel, Fabrice %A Orlandi, Giandomenico %A Smets, Didier %T Improved estimates for the Ginzburg-Landau equation : the elliptic case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 319-355 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/ %G en %F ASNSP_2005_5_4_2_319_0
Bethuel, Fabrice; Orlandi, Giandomenico; Smets, Didier. Improved estimates for the Ginzburg-Landau equation : the elliptic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 319-355. https://www.numdam.org/item/ASNSP_2005_5_4_2_319_0/
[1] , A Trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105. | Zbl | MR
[2] , Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 297 (1986), 73-94. | Zbl | MR
[3] , and , Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., to appear | Zbl | MR
[4] and , A measure theoretic approach to higher codimension mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 27-49. | Zbl | MR | Numdam
[5] , , and , estimates for solutions to the Ginzburg-Landau equations with boundary data in , C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 1-8. | Zbl | MR
[6] , and , Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993), 123-148. | Zbl | MR
[7] , and , “Ginzburg-Landau vortices”, Birkhäuser, Boston, 1994. | Zbl | MR
[8] , and , Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), 432-520. Erratum 188 (2002), 548-549. | Zbl | MR
[9] and , Uniform estimates for the parabolic Ginzburg-Landau equation, ESAIM Control Optim. Calc. Var. 9 (2002), 219-238. | Zbl | MR | Numdam
[10] , and , Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc. 6 (2004), 17-94. | Zbl | MR
[11] , and , Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature, Ann. of Math., to appear | Zbl | MR
[12] , and , Motion of concentration sets in Ginzburg-Landau equations, Ann. Sci. Fac. Toulouse 13 (2004), 3-43. | Zbl | MR | Numdam
[13] , and , Approximations with vorticity bounds for the Ginzburg-Landau functional, Commun. Contemp. Math. 6 (2004), 803-832. | Zbl | MR
[14] , and , Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, Duke Math. J., to appear. | Zbl | MR
[15] and , A minimization problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 243-303. | Zbl | MR | Numdam
[16] and , New estimates for the Laplacian, the div-curl and related Hodge systems, C.R. Acad. Sci. Paris Sér. I Math. 338 (2004), 539-543. | Zbl | MR
[17] , and , On the structure of the Sobolev space with values in the circle, C.R. Acad. Sci. Paris Série I 331 (2000), 119-124. | Zbl | MR
[18] , and , maps with values into the circle: minimal connections, lifting and the Ginzburg-Landau equation, Inst. Hantes Études Sci. Publ. Math. 99 (2004), 1-115. | Zbl | MR | Numdam
[19] , “The motion of a surface by its mean curvature”, Princeton University Press, Princeton, 1978. | Zbl | MR
[20] and , Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau, C. R. Acad. Sci. Paris Série I Math. 319 (1994), 167-170. | Zbl | MR
[21] and , Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), 83-103. | Zbl | MR
[22] , Boundary problems for the Ginzburg-Landau equation, Comm. Contemp. Math., to appear. | Zbl | MR
[23] , , and , Compensated compactness and Hardy spaces J. Math. Pures Appl. 72 (1993), 247-286. | Zbl | MR
[24] and , The behavior of a Ginzburg-Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations 4 (1996), 323-340. | Zbl | MR
[25] , and , Etude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 427-440. | Zbl | MR | Numdam
[26] and , Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161-187. | Zbl | MR | Numdam
[27] , Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Differential Geom. 38 (1993), 417-461. | Zbl | MR
[28] and , The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151-191. | Zbl | MR
[29] and , Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. 1 (1999), 237-311. Erratum, J. Eur. Math. Soc. 2 (2000), 87-91. | Zbl | MR
[30] and , A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math. 54 (2001), 206-228. | Zbl | MR
[31] and , Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. | Zbl | MR
[32] , Geometry of measures in : distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537-643. | Zbl | MR
[33] , Line vortices in the Higgs model, ESAIM Control Optim. Calc. Var. 1 (1996), 77-167. | Zbl | MR | Numdam
[34] and , “Lectures on harmonic maps”, International Press, Cambridge, MA, 1997. | Zbl | MR
[35] , Lectures on Geometric Measure Theory, Proc. of the centre for Math. Anal., Austr. Nat. Univ., 1983. | Zbl | MR
[36] , On the asymptotic behavior of minimizers of the Ginzburg-Landau model in dimensions, Differential Integral Equations 7 (1994), 1613-1624. | Zbl | MR
[37] , A simple proof of an inequality of Bourgain, Brezis and Mironescu, C.R. Acad. Sci. Paris, Sér. 1 Math. 338 (2004), 23-26. | Zbl | MR
[38] , “Weakly differentiable functions. Sobolev spaces and functions of bounded variation”, Graduate Texts in Math. 120, Springer Verlag, New York, 1989. | Zbl | MR






