Using recent development in Poletsky theory of discs, we prove the following result: Let be two complex manifolds, let be a complex analytic space which possesses the Hartogs extension property, let (resp. ) be a non locally pluripolar subset of (resp. ). We show that every separately holomorphic mapping extends to a holomorphic mapping on such that on where (resp. is the plurisubharmonic measure of (resp. ) relative to (resp. ). Generalizations of this result for an -fold cross are also given.
Nguyên, Viêt-Anh 1
@article{ASNSP_2005_5_4_2_219_0,
author = {Nguy\^en, Vi\^et-Anh},
title = {A general version of the {Hartogs} extension theorem for separately holomorphic mappings between complex analytic spaces},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {219--254},
year = {2005},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 4},
number = {2},
mrnumber = {2163556},
zbl = {1170.32306},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2005_5_4_2_219_0/}
}
TY - JOUR AU - Nguyên, Viêt-Anh TI - A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2005 SP - 219 EP - 254 VL - 4 IS - 2 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2005_5_4_2_219_0/ LA - en ID - ASNSP_2005_5_4_2_219_0 ER -
%0 Journal Article %A Nguyên, Viêt-Anh %T A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2005 %P 219-254 %V 4 %N 2 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2005_5_4_2_219_0/ %G en %F ASNSP_2005_5_4_2_219_0
Nguyên, Viêt-Anh. A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 219-254. https://www.numdam.org/item/ASNSP_2005_5_4_2_219_0/
[1] et Propriété de stabilité de la fonction extrémale relative, preprint, (1999). | MR
[2] , and , Continuation of holomorphic mappings with values in a complex Lie group, Pacific J. Math. 47 (1973), 1-4. | Zbl | MR
[3] et , Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245-278. | Zbl | MR
[4] , The operator on complex spaces, Semin. P. Lelong - H. Skoda, Analyse, Années 1980/81, Lect. Notes Math. 919 (1982), 294-323. | Zbl | MR
[5] and , A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | Zbl | MR
[6] , Analytic discs method in complex analysis, Dissertationes Math. 402 (2002). | Zbl | MR
[7] and , Product property of the relative extremal function, Bull. Polish Acad. Sci. Math. 45 (1997), 331-335. | Zbl | MR
[8] , Zur Theorie der analytischen Funktionen mehrer unabhängiger Veränder- lichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1-88. | MR | JFM
[9] , On the equivalence between polar and globally polar sets for plurisubharmonic functions on , Ark. Mat. 16 (1978), 109-115. | Zbl | MR
[10] , The Hartogs phenomenon for holomorphically convex Kähler manifolds, Math. USSR-Izv. 29 (1997), 225-232. | Zbl
[11] and , “Extension of Holomorphic Functions”, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000. | Zbl | MR
[12] and , An extension theorem for separately holomorphic functions with analytic singularities, Ann. Polon Math. 80 (2003), 143-161. | Zbl | MR | EuDML
[13] and , An extension theorem for separately holomorphic functions with pluripolar singularities, Trans. Amer. Math. Soc. 355 (2003), 1251-1267. | Zbl | MR
[14] and , An extension theorem for separately meromorphic functions with pluripolar singularities, Kyushu J. of Math., 57 (2003), 291-302. | Zbl | MR
[15] , “Pluripotential theory”, London Mathematical society monographs, Oxford Univ. Press., 6, 1991. | Zbl | MR
[16] and , Locally bounded holomorphic functions and the mixed Hartogs theorem, Southeast Asian Bull. Math. 23 (1999), 643-655. | Zbl | MR
[17] and , Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39. | Zbl | MR
[18] , Separate analyticity and related subjects, Vietnam J. Math. 25 (1997), 81-90. | Zbl | MR
[19] , Note on doubly orthogonal system of Bergman, In: “Linear Topological Spaces and Complex Analysis” 3 (1997), 157-159. | Zbl | MR
[20] , Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques, Ann. Inst. Fourier Grenoble 19 (1969), 419-493. | Zbl | MR | Numdam | EuDML
[21] and , Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sci. Math. 115 (1991), 235-244. | Zbl | MR
[22] et , Familles de polynômes presque partout bornées, Bull. Sci. Math. 107 (1983), 81-89. | Zbl | MR
[23] et , Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In: “Analyse Complexe Multivariable, Récents Développements”, A. Meril (ed.), EditEl, Rende, 1991, 183-194. | Zbl | MR
[24] et , Systèmes doublement orthogonaux de fonctions holomorphes et applications, Banach Center Publ. 31, Inst. Math., Polish Acad. Sci. (1995), 281-297. | Zbl | MR | EuDML
[25] , Extension of separately holomorphic functions-a survey 1899-2001, Ann. Polon. Math. 80 (2003), 21-36. | Zbl | MR | EuDML
[26] , Plurisubharmonic functions as solutions of variational problems, In: “Several complex variables and complex geometry”, Proc. Summer Res. Inst., Santa Cruz/CA (USA) 1989, Proc. Symp. Pure Math. 52, Part 1 (1991), 163-171. | Zbl | MR
[27] , Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | Zbl | MR
[28] and , A boundary cross theorem for separately holomorphic functions, Ann. Polon. Math. 84 (2004), 237-271. | Zbl | MR | EuDML
[29] and , Generalization of Drużkowski's and Gonchar's “Edge-of-the-Wedge” Theorems, preprint 2004, available at arXiv:math.CV/0503326.
[30] and , Envelope of holomorphy for boundary cross sets, preprint 2005. | MR | Zbl
[31] , “Potential theory in the complex plane”, London Mathematical Society Student Texts 28, Cambridge: Univ. Press., 1995. | Zbl | MR
[32] , Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157-169. | Zbl | MR
[33] , Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61-119. | Zbl | MR
[34] , Extension of holomorphic maps into Hermitian manifolds, Math. Ann. 194 (1971), 249-258. | Zbl | MR | EuDML
[35] , Notes on the functions of two complex variables, J. Gakugei Tokushima Univ. 8 (1957), 1-3. | Zbl | MR
[36] , Analyticity and separate analyticity of functions defined on lower dimensional subsets of , Zeszyty Nauk. Univ. Jagiello. Prace Mat. Zeszyt 13 (1969), 53-70. | Zbl | MR
[37] , Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of , Ann. Polon. Math. 22 (1970), 145-171. | Zbl | MR | EuDML
[38] , Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe, Publ. Res. Inst. Math. Sci. 2 (1967), 383-396. | Zbl | MR
[39] , Separately analytic functions, generalizations of the Hartogs theorem and envelopes of holomorphy, Math. USSR-Sb. 30 (1976), 51-67. | Zbl
[40] , Comportement asymptotique des systèmes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177-188. | Zbl | MR
[41] , Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233. | Zbl | MR






