We prove the uniqueness of weak solutions for the Cauchy problem for a class of transport equations whose velocities are partially with bounded variation. Our result deals with the initial value problem where is the vector fieldwith a boundedness condition on the divergence of each vector field . This model was studied in the paper [LL] with a regularity assumption replacing our hypothesis. This settles partly a question raised in the paper [Am]. We examine the details of the argument of [Am] and we combine some consequences of the Alberti rank-one structure theorem for vector fields with a regularization procedure. Our regularization kernel is not restricted to be a convolution and is introduced as an unknown function. Our method amounts to commute a pseudo-differential operator with a function.
Lerner, Nicolas 1
@article{ASNSP_2004_5_3_4_681_0,
author = {Lerner, Nicolas},
title = {Transport equations with partially $BV$ velocities},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {681--703},
year = {2004},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 3},
number = {4},
mrnumber = {2124585},
zbl = {1170.35362},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2004_5_3_4_681_0/}
}
TY - JOUR AU - Lerner, Nicolas TI - Transport equations with partially $BV$ velocities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 681 EP - 703 VL - 3 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2004_5_3_4_681_0/ LA - en ID - ASNSP_2004_5_3_4_681_0 ER -
%0 Journal Article %A Lerner, Nicolas %T Transport equations with partially $BV$ velocities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 681-703 %V 3 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2004_5_3_4_681_0/ %G en %F ASNSP_2004_5_3_4_681_0
Lerner, Nicolas. Transport equations with partially $BV$ velocities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 4, pp. 681-703. https://www.numdam.org/item/ASNSP_2004_5_3_4_681_0/
[Ai] , On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. of Math. 107 (1978), 287-296. | Zbl | MR
[Al] , Rank one properties for derivatives of functions with bounded variations, Proc. Roy. Soc. Edinburgh sect. A 123 (1993), 239-274. | Zbl | MR
[Am] , Transport equations and Cauchy problem for vector fields, Invent. Math. 158 (2003), 227-260. | Zbl | MR
[AFP] - - , “Functions of bounded variations and free discontinuity problems”, Oxford Mathematical Monographs, 2000. | Zbl | MR
[Bo] , Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal. 157 (2001), 75-90. | Zbl | MR
[BD] - , On two-dimensional Hamiltonian transport equations with continuous coefficients, Differential Integral Equations 14 (2001), 1015-1024. | Zbl | MR
[BJ] - , One dimensional transport equations with discontinuous coefficients, Nonlinear Anal. 32 (1998), 891-933. | Zbl | MR
[CP] - , On some analogy between different approaches to first-order PDE's with non smooth coefficients, Adv. Math. Sci. Appl. 6 (1996), 689-703. | Zbl | MR
[ChL] - , Flot de champ de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations 121 (1995), 314-328. | Zbl | MR
[CL1] - , Uniqueness of continuous solutions for vector fields, Duke Math. J. 111 (2002), 357-384. | Zbl | MR
[CL2] - , Uniqueness of solutions for a class of conormal vector fields, to appear in: “Geometric Analysis of PDE and Several Complex Variables”, 2003, S. Chanillo - P. Cordaro - N. Hanges - J. Hounie - A. Meziani (eds.). | Zbl | MR
[CLR] - - , Uniqueness and nonuniqueness for nonsmooth divergence free transport, Séminaire XEDP, Ecole Polytechnique (2003-04). | Zbl | MR | Numdam
[De] , Non unicité des solutions bornées pour un champ de vecteurs en dehors d’un hyperplan., C.R. Math. Acad. Sci. Paris 337 (2003), 249-252. | Zbl | MR
[DL] - , Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | Zbl | MR
[Fe] , “Geometric measure theory”, Grund. der Math. Wiss. 153, Springer-Verlag, 1969. | Zbl
[LL] - , Renormalized solutions of some transport equations with partially velocities and applications, Ann. Mat. Pura Appl. 183 (2004), 97-130. | Zbl | MR
[Li] , Sur les équations différentielles ordinaires et les équations de transport, C.R. Acad. Sc. Paris, Série I, 326 (1998), 833-838. | Zbl | MR
[Tr] , “Topological vector spaces, distributions and kernels”, Pure & Appl. Math. Ser., Academic Press, 1967. | Zbl | MR
[Vo] , The space and quasi-linear equations, Math. USSR Sbornik 2 (1967), 225-267. | Zbl
[Zi] , “Weakly differentiable functions”, Graduate texts in mathematics, Springer-Verlag, Vol. 120, 1989. | Zbl | MR





