We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation , where , , and is a convex function of with linear growth as , satisfying other additional assumptions. In particular, this class includes the case where , , being a convex function with linear growth as . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in .
Andreu, Fuensanta 1 ; Caselles, Vicent 2 ; Mazón, José 1
@article{ASNSP_2004_5_3_3_555_0,
author = {Andreu, Fuensanta and Caselles, Vicent and Maz\'on, Jos\'e},
title = {A strongly degenerate quasilinear equation : the elliptic case},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {555--587},
year = {2004},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 3},
number = {3},
mrnumber = {2099249},
zbl = {1117.35022},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2004_5_3_3_555_0/}
}
TY - JOUR AU - Andreu, Fuensanta AU - Caselles, Vicent AU - Mazón, José TI - A strongly degenerate quasilinear equation : the elliptic case JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 555 EP - 587 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2004_5_3_3_555_0/ LA - en ID - ASNSP_2004_5_3_3_555_0 ER -
%0 Journal Article %A Andreu, Fuensanta %A Caselles, Vicent %A Mazón, José %T A strongly degenerate quasilinear equation : the elliptic case %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 555-587 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2004_5_3_3_555_0/ %G en %F ASNSP_2004_5_3_3_555_0
Andreu, Fuensanta; Caselles, Vicent; Mazón, José. A strongly degenerate quasilinear equation : the elliptic case. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 555-587. https://www.numdam.org/item/ASNSP_2004_5_3_3_555_0/
[1] - - , “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendom Press, Oxford University Press, 2000. | Zbl | MR
[2] - - , A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana 18 (2002), 135-185. | Zbl | MR
[3] - - , Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth functionals with data, Math. Ann. 322 (2002), 139-206. | Zbl | MR
[4] - - , The Cauchy Problem for Linear Growth Functionals with, J. Evol. Equ. 3 (2003), 39-65. | Zbl | MR
[5] - - , “Parabolic Quasilinear Equations Minimizing Linear Growth Functionals”, Progress in Mathematics, vol. 223, Birkhäuser-Verlag, Basel, 2004. | Zbl | MR
[6] - - , A Strongly Degenerate Quasilinear Equation: the Parabolic Case, preprint, 2003.
[7] , Pairings Between Measures and Bounded Functions and Compensated Compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293-318. | Zbl | MR
[8] - - - - , A mathematical Model of Turbulent Heat and Mass Transfer in Stable Stratified Shear Flow, J. Fluid Mech. 253 (1993), 341-358. | Zbl | MR
[9] - - - - - , An -Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273. | Zbl | MR | Numdam
[10] - , Completely Accretive Operators, In: “Semigroups Theory and Evolution Equations”, Ph. Clement et al. (eds.), Marcel Dekker, 1991, pp. 41-76. | Zbl | MR
[11] - - , “Evolution Equations Governed by Accretive Operators”, Book in preparation.
[12] - , Hyperbolic Phenomena in a Strongly Degenerate Parabolic Equation, Arch. Ration. Mech. Anal. 117 (1992), 349-387. | Zbl | MR
[13] - , A Parabolic Equation with Mean-Curvature Type Operator, In: “Progres Nonlinear Differential Equation Appl.”, F. Browder (ed.), 7 Birkhäuser, 1992, 89-97. | Zbl | MR
[14] , On the regularity of the solutions of some degenerate parabolic equations, Comm. Partial Differential Equations 18 (1993), 821-846. | Zbl | MR
[15] , Sur une classe d'equations paraboliques degeneréesa une dimension d'espace possedant des solutions discontinues, Ph.D. Thesis, number 798, Ecole Polytechnique Federale de Lausanne, 1989. | Zbl
[16] - , Renormalized solutions on nonlinear parabolic problems with data: existence and uniqueness, Proc. Royal Soc. Edinburgh Sect. A 127 (1997), 1137-1152. | Zbl | MR
[17] - , Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic problems, J. Differential Equations 156 (1999), 93-121. | Zbl | MR
[18] , Nonlinear Semigroups and Evolution Governed by Accretive Operators, In: “Proceeding of Symposium in Pure Mat.”, Part I, F. Browder (ed.) A.M.S., Providence 1986, 305-338. | Zbl | MR
[19] - , Generation of Semigroups of Nonlinear Transformations on General Banach Spaces, Amer. J. Math. 93 (1971), 265-298. | Zbl | MR
[20] , Integral representation on of -limits of variational integrals, Manuscripta Math. 30 (1980), 387-416. | Zbl | MR
[21] , Uniqueness of the entropy solution of a strongly degenerate parabolic equation, Comm. Partial Differential Equations 18 (1993), 265-279. | Zbl | MR
[22] - , Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl., (8) 82 (1988), 199-210. | Zbl | MR
[23] - , “Inertial Confinement Fusion”, John Wiley & Sons, 1982.
[24] - , “Measure Theory and Fine Properties of Functions”, Studies in Advanced Math., CRC Press, 1992. | Zbl | MR
[25] - , “Convex Functions and Orliz Spaces”, P. Noordholff, Groningen, 1961. | Zbl
[26] - , Dual space of stress and strains with application to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1-35. | Zbl | MR
[27] , First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243. | Zbl
[28] - , Quelques resultats de Visik sur les problemes elliptiques semi-lineaires par les metode de Minty et Browder, Bull. Soc. Math. France 93 (1965), 97-107. | Zbl | MR | Numdam
[29] , Free Energy Functionals at the High Gradient Limit, Phys. Rev. A 41 (1990), 2227-2230.
[30] , “Weakly Differentiable Functions”, GTM 120, Springer Verlag, 1989. | Zbl | MR






