In this note we give a characterization of the complex geodesics of the minimal ball in . This answers a question posed by Jarnicki and Pflug (cf. [JP], Example 8.3.10)
Pflug, Peter 1 ; Youssfi, El Hassan 2
@article{ASNSP_2004_5_3_1_53_0,
author = {Pflug, Peter and Youssfi, El Hassan},
title = {Complex geodesics of the minimal ball in $\mathbb {C}^n$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {53--66},
year = {2004},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 3},
number = {1},
mrnumber = {2064967},
zbl = {1098.32005},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2004_5_3_1_53_0/}
}
TY - JOUR
AU - Pflug, Peter
AU - Youssfi, El Hassan
TI - Complex geodesics of the minimal ball in $\mathbb {C}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
SP - 53
EP - 66
VL - 3
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2004_5_3_1_53_0/
LA - en
ID - ASNSP_2004_5_3_1_53_0
ER -
%0 Journal Article
%A Pflug, Peter
%A Youssfi, El Hassan
%T Complex geodesics of the minimal ball in $\mathbb {C}^n$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 53-66
%V 3
%N 1
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2004_5_3_1_53_0/
%G en
%F ASNSP_2004_5_3_1_53_0
Pflug, Peter; Youssfi, El Hassan. Complex geodesics of the minimal ball in $\mathbb {C}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 53-66. https://www.numdam.org/item/ASNSP_2004_5_3_1_53_0/
[E] , On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. | Zbl | MR | EuDML
[G] , Regular complex geodesics in the domain , In: “Complex Analysis III”, C. A. Berenstein (ed.), Lecture Notes in Math. Vol. 1275, Springer-Verlag, Berlin, 1987, pp. 235-252. | Zbl | MR
[HP] - , On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), 107-112. | Zbl | MR | EuDML
[JP] - , “Invariant Distances and Metrics in Complex Analysis”, de Gruyter Expositions in Mathematics, Walter de Gruyter, 1993. | Zbl | MR
[K] , Automorphism group of certain domains with singular boundary, Pacific J. Math. 51 (1991), 54-64. | Zbl | MR
[MY] - , The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. Math. 123 (1999), 501-525. | Zbl | MR
[OPY] - - , The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. | Numdam | Zbl | MR | EuDML
[OY] - , Proper holomorphic mappings and related automorphism groups, J. Geom. Anal. 7 (1997), 623-636. | Zbl | MR
[PY] - , The Lu Qi-Keng conjecture fails for strongly convex algebraic domains, Arch. Math. 71 (1998), 240-245. | Zbl | MR
[Z] , Automorphism group of some special domain in , Univ. Iagel. Acta Math. 33 (1996), 185-189. | Zbl | MR





