Let be the open upper light cone in with respect to the Lorentz product. The connected linear Lorentz group acts on and therefore diagonally on the -fold product where We prove that the extended future tube is a domain of holomorphy.
Heinzner, Peter 1 ; Schützdeller, Patrick 2
@article{ASNSP_2004_5_3_1_39_0,
author = {Heinzner, Peter and Sch\"utzdeller, Patrick},
title = {The extended future tube conjecture for {SO(1,} ${\it {n}}$)},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {39--52},
year = {2004},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 3},
number = {1},
mrnumber = {2064966},
zbl = {1170.32300},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2004_5_3_1_39_0/}
}
TY - JOUR
AU - Heinzner, Peter
AU - Schützdeller, Patrick
TI - The extended future tube conjecture for SO(1, ${\it {n}}$)
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
SP - 39
EP - 52
VL - 3
IS - 1
PB - Scuola Normale Superiore, Pisa
UR - https://www.numdam.org/item/ASNSP_2004_5_3_1_39_0/
LA - en
ID - ASNSP_2004_5_3_1_39_0
ER -
%0 Journal Article
%A Heinzner, Peter
%A Schützdeller, Patrick
%T The extended future tube conjecture for SO(1, ${\it {n}}$)
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2004
%P 39-52
%V 3
%N 1
%I Scuola Normale Superiore, Pisa
%U https://www.numdam.org/item/ASNSP_2004_5_3_1_39_0/
%G en
%F ASNSP_2004_5_3_1_39_0
Heinzner, Peter; Schützdeller, Patrick. The extended future tube conjecture for SO(1, ${\it {n}}$). Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 39-52. https://www.numdam.org/item/ASNSP_2004_5_3_1_39_0/
[B] , Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. | Zbl | MR
[FK] - , “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. | Zbl | MR
[HW] - , A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. | Zbl
[He1] , Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | Zbl | MR
[He2] , The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. | Zbl | MR
[HeHuL] - - , Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. | Zbl | MR
[HeMP] - - , Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. | Zbl | MR | Numdam
[J] , The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. | Zbl | MR
[Kr] , Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. | Zbl | MR
[N] , The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. | Zbl | MR
[SV] - , Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179-253. | Zbl
[StW] - , “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. | Zbl | MR
[W] , Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. | Zbl | MR
[Z] , A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. | Zbl | MR






