Let be either the unit ball or the half ball let be a strictly positive and continuous function, and let and solve the following overdetermined problem:
@article{ASNSP_2003_5_2_4_787_0,
author = {Blank, Ivan and Shahgholian, Henrik},
title = {Boundary regularity and compactness for overdetermined problems},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {787--802},
year = {2003},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 2},
number = {4},
mrnumber = {2040643},
zbl = {1170.35484},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/}
}
TY - JOUR AU - Blank, Ivan AU - Shahgholian, Henrik TI - Boundary regularity and compactness for overdetermined problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 787 EP - 802 VL - 2 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/ LA - en ID - ASNSP_2003_5_2_4_787_0 ER -
%0 Journal Article %A Blank, Ivan %A Shahgholian, Henrik %T Boundary regularity and compactness for overdetermined problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 787-802 %V 2 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/ %G en %F ASNSP_2003_5_2_4_787_0
Blank, Ivan; Shahgholian, Henrik. Boundary regularity and compactness for overdetermined problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 2 (2003) no. 4, pp. 787-802. https://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/
[B] , Sharp results for the regularity and stability of the free boundary in the obstacle problem, Indiana Univ. Math. J. 50 (2001), 1077-1112. | Zbl | MR
[C1] , The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 155-184. | Zbl | MR
[C2] , Compactness methods in free boundary problems, Comm. Partial Differential Equations 5 (1980), 427-448. | Zbl | MR
[C3] , The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 383-402. | Zbl | MR
[CKS] - - , Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. 151 (2000), 269-292. | Zbl | MR
[F] , “Variational Principles and Free Boundary Problems”, Wiley, 1982. | Zbl | MR
[GT] - , “Elliptic Partial Differential Equations of Second Order”, 2nd ed., Springer-Verlag, 1983. | Zbl | MR
[I] , “Inverse Source Problems”, AMS Math. Surveys and Monographs 34, Providence, Rhode Island, 1990. | Zbl | MR
[KN] - , Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa 4 (1977), 373-391. | Zbl | MR | Numdam
[KS] - , On the optimal growth of functions with bounded Laplacian, Electron. J. Differential Equations 2000 (2000), 1-9. | Zbl | MR
[KT] - , Free boundary regularity for harmonic measures and Poisson Kernels, Ann. of Math. 150 (1999), 369-454. | Zbl | MR
[M] , Potential theory for -densities and its applications to inverse problems of gravimetry, Theory and Practice of Gravitational and Magnetic Fields Interpretation in USSR, Naukova Dumka Press, Kiev, 1983, 188-197 (Russian).
[R] , Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. | Zbl | MR
[Sc] , Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977), 133-144. | Zbl | MR | Numdam
[St] , The inverse logarithmic potential problem for contact surface, Physics of the Solid Earth 10 (1974), 104-114 [translated from Russian].
[SU] - , Regularity properties of a free boundary near contact points with the fixed boundary, Duke Univ. Math. J. 116 (2003), 1-34. | Zbl | MR
[T] , Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), 1087-1094. | Zbl | MR






