We prove that for a parabolic subgroup of the fixed points sets of all elements in are the same. This result, together with a deep study of the structure of subgroups of acting freely and properly discontinuously on , entails a generalization of the so called weak Hurwitz’s theorem: namely that, given a complex manifold covered by and such that the group of deck transformations of the covering is “sufficiently generic”, then is isolated in .
@article{ASNSP_2002_5_1_4_851_0,
author = {de Fabritiis, Chiara},
title = {Generic subgroups of {Aut} $\mathbb {B}^n$},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {851--868},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {4},
mrnumber = {1991005},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_4_851_0/}
}
TY - JOUR
AU - de Fabritiis, Chiara
TI - Generic subgroups of Aut $\mathbb {B}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
SP - 851
EP - 868
VL - 1
IS - 4
PB - Scuola normale superiore
UR - https://www.numdam.org/item/ASNSP_2002_5_1_4_851_0/
LA - en
ID - ASNSP_2002_5_1_4_851_0
ER -
de Fabritiis, Chiara. Generic subgroups of Aut $\mathbb {B}^n$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 851-868. https://www.numdam.org/item/ASNSP_2002_5_1_4_851_0/
[1] M. Abate:, “Iteration theory of holomorphic maps on taut manifolds”, Mediterranean Press, Rende, Cosenza 1989. | Zbl | MR
[2] - , Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. | Zbl | MR
[3] , Common fixed points of commuting holomorphic maps in the unit ball of , Proc. Amer. Math. Soc. 127, 4, (1999), 1133-1141. | Zbl | MR
[4] , Commuting holomorphic functions and hyperbolic automorphisms, Proc. Amer. Math. Soc. 124 (1996), 3027-3037. | Zbl | MR
[5] - , On holomorphic maps which commute with hyperbolic automorphisms, Adv. Math. 144 (1999), 119-136. | Zbl | MR
[6] - , Quotients of the unit ball of by a free action of , Jour. d'Anal. Math. 85 (2001), 213-224. | Zbl | MR
[7] - , “Riemann Surfaces”, Springer, Berlin, 1980. | Zbl | MR
[8] - , “Holomorphic maps and invariant distances”, North-Holland, Amsterdam, 1980. | Zbl | MR
[9] , A generalization of the Aumann-Carathéodory Starrheitssatz, Duke Math. J. 8 (1941), 312-316. | MR | JFM
[10] , Über algebraische Gebilde mit eindeutingen Transformationen in sich, Math. Ann. 41 (1893), 403-442. | MR | JFM
[11] , “Automorphic forms and Kleinian groups”, Beinjamin, New York, 1972. | Zbl | MR
[12] , Iterates of holomorphic self-maps of the unit ball of , Mich. Math. J. 30 (1983), 97-106. | Zbl | MR
[13] , “Function theory in the Unit Ball of ”, Springer, Berlin 1980. | Zbl | MR





