We give type conditions which are sufficient for two-weight, strong inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function . Our results extend earlier work on weak inequalities in [13].
@article{ASNSP_2002_5_1_4_821_0,
author = {Cruz-Uribe, David and P\'erez, Carlos},
title = {On the two-weight problem for singular integral operators},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {821--849},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {4},
mrnumber = {1991004},
zbl = {1072.42010},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_4_821_0/}
}
TY - JOUR AU - Cruz-Uribe, David AU - Pérez, Carlos TI - On the two-weight problem for singular integral operators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 821 EP - 849 VL - 1 IS - 4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_4_821_0/ LA - en ID - ASNSP_2002_5_1_4_821_0 ER -
%0 Journal Article %A Cruz-Uribe, David %A Pérez, Carlos %T On the two-weight problem for singular integral operators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 821-849 %V 1 %N 4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_4_821_0/ %G en %F ASNSP_2002_5_1_4_821_0
Cruz-Uribe, David; Pérez, Carlos. On the two-weight problem for singular integral operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 4, pp. 821-849. https://www.numdam.org/item/ASNSP_2002_5_1_4_821_0/
[1] , SFO - A. Fiorenza | Zbl | MR
[2] , SFO - C. Pérez, Sharp two-weight, weak-type norm inequalities for singular integral operators, Math. Res. Let. 6 (1999), 417-428. | Zbl | MR
[3] , SFO - C. Pérez, Two-weight, weak-type norm inequalities for fractional integrals, Calderón-Zygmund operators and commutators, Indiana Math. J. 49 (2000), 697-721. | Zbl | MR
[4] , “Fourier Analysis”, Grad. Studies Math. 29, Amer. Math. Soc., Providence, 2000. | Zbl | MR
[5] , Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. | Zbl | MR
[6] , A condition for a two-weight norm inequality for singular integral operators, Studia Math. 98 (1991), 175-190. | Zbl | MR
[7] - - - , Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J. 40 (1991), 1398-1420. | Zbl | MR
[8] - , “Weighted Norm Inequalities and Related Topics”, North Holland Math. Studies 116, North Holland, Amsterdam, 1985. | Zbl | MR
[9] , Pseudo-differential operators and hypoelliptic equations, Proc. Symp. Pure Math. 10 (1967), 138-183. | Zbl | MR
[10] , Mean oscillation and commutators of singular integrals, Ark. Mat. 16 (1978), 263-270. | Zbl | MR
[11] , “Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón”, Lecture Notes in Mathematics, 994, Springer Verlag, Berlin, 1983. | Zbl
[12] - , On the two weights problem for the Hilbert transform, Rev. Mat. Iberoamericana 13 (1997), 189-210. | Zbl | MR
[13] , Structure results on the maximal Hilbert transform and two-weight norm inequalities, Indiana Math. J. 34 (1985), 259-275. | Zbl | MR
[14] , Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl | MR
[15] - , Norm inequalities for Littlewood-Paley function , Trans. Amer. Math. Soc. 191 (1974), 95-111. | Zbl | MR
[16] - , Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 60 (1976), 279-294. | Zbl | MR
[17] , Inserting -weights, Proc. Amer. Math. Soc. 87 (1983), 644-648. | Zbl | MR
[18] , Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1965), 300-328. | Zbl | MR
[19] , Two weighted inequalities for potential and fractional type maximal operators, Indiana Math. J. 43 (1994), 663-683. | Zbl | MR
[20] , On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted -spaces with different weights, Proc. London Math. Soc. 71 (1995), 135-57. | Zbl | MR
[21] , Endpoint estimates for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185. | Zbl | MR
[22] , Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (6) (1997), 743-756. | Zbl | MR
[23] - , Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J. 49 (2001), 23-37. | Zbl | MR
[24] - , Uncertainty principle estimates for vector fields, J. Func. Anal. 181 (2001), 146-188. | Zbl | MR
[25] - , Hilbert integrals, singular integrals and Radon transforms, Acta Math. 157 (1985), 99-157. | Zbl | MR
[26] - , “Theory of Orlicz Spaces”, Marcel Dekker, New York, 1991. | Zbl | MR
[27] , Two weight norm inequality for Calderón-Zygmund operators, Acta Math. Hungar. 80 (1998), 39-54. | Zbl | MR
[28] , Two-weight inequality for commutators of singular integral operators, Kobe J. Math. 16 (1999), 1-20. | Zbl | MR
[29] - - , Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62, (1986), 7-48. | Zbl | MR
[30] , A characterization of a two weight norm weight inequality for maximal operators, Studia Math. 75 (1982), 1-11. | Zbl | MR
[31] - , Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537-556. | Zbl | MR
[32] , Note on the class L logL, Studia Math. 32 (1969), 305-310. | Zbl | MR
[33] , “Singular Integrals and Differentiability Properties of Functions”, Princeton University Press, Princeton, 1970. | Zbl | MR
[34] - , “Weighted Hardy Spaces”, Lecture Notes in Mathematics, 1381, Springer Verlag, Berlin, 1989. | Zbl | MR
[35] , “Real-Variable Methods in Harmonic Analysis”, Academic Press, New York, 1986. | Zbl | MR
[36] - - , Hilbert Transform 13 (1997), 319-360. | Zbl | MR
[37] , A note on Orlicz spaces, Portugal. Math. 15 (1950), 35-47. | Zbl | MR
[38] , Weighted norm inequalities for the continuous square functions, Trans. Amer. Math. Soc. 314 (1989), 661-692. | Zbl | MR






