We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
@article{ASNSP_2002_5_1_1_203_0,
author = {Apostolov, Vestislav and Gauduchon, Paul},
title = {Selfdual {Einstein} hermitian four-manifolds},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {203--243},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {1},
mrnumber = {1994808},
zbl = {1072.53006},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_1_203_0/}
}
TY - JOUR AU - Apostolov, Vestislav AU - Gauduchon, Paul TI - Selfdual Einstein hermitian four-manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 203 EP - 243 VL - 1 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_1_203_0/ LA - en ID - ASNSP_2002_5_1_1_203_0 ER -
%0 Journal Article %A Apostolov, Vestislav %A Gauduchon, Paul %T Selfdual Einstein hermitian four-manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 203-243 %V 1 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_1_203_0/ %G en %F ASNSP_2002_5_1_1_203_0
Apostolov, Vestislav; Gauduchon, Paul. Selfdual Einstein hermitian four-manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 203-243. https://www.numdam.org/item/ASNSP_2002_5_1_1_203_0/
[1] - - , Compact Self-dual Hermitian Surfaces, Trans. Amer. Math. Soc. 348 (1996), 3051-3063. | Zbl | MR
[2] - , The Riemannian Goldberg-Sachs Theorem, Int. J. Math. 8 (1997), 421-439. | Zbl | MR
[3] , “Almost Kähler Geometry”, Ph.D. Thesis, Oxford, 1998.
[4] - - , Self-duality in four dimensional geometry, Proc. Roy. Soc. London, A 362 (1979), 425-461. | Zbl | MR
[5] , Sur de nouvelles variétés riemanniennes d'Einstein, Publications de l'Institut É. Cartan (Nancy) 4 (1982), 1-60. | Zbl
[6] , “Einstein manifolds”, Ergeb. Math. Grenzgeb.3, Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. | Zbl | MR
[7] , Les variétés de dimension à signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math. 63 (1981), 263-286. | Zbl | MR
[8] - , Killing vectors in self-dual Euclidean Einstein spaces, J. Math. Phys. (1982), 1126-1130. | Zbl | MR
[9] , Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526. | Zbl | MR
[10] , A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164. | Zbl | MR
[11] , Self-dual and anti-self-dual Hermitian metrics on compact complex surfaces, In “Mathematics and General Relativity”, Proceedings, Santa Cruz 1986, J. Isenberg (ed.), Contemp. Math. 71 (1988), 105-114. | Zbl | MR
[12] , Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001) 623-715. | Zbl | MR
[13] , The Faraday 2-form in Einstein-Weyl geometry, Math. Scand. 89 (2001) 97-116. | Zbl | MR
[14] , The geometry of the Toda equation, J. Geom. Phys. 36 (2000) 152-162. | Zbl | MR
[15] , “Selfdual Einstein metrics and conformal submersions”, Edinburgh Preprint MS-00-001 (2000), available at arXiv: math.DG/0001041.
[16] - , Einstein metrics, hyper-complex structures and the Toda field equation, Differential Geom. Appl. 14 (2001) 199-208. | Zbl | MR
[17] - , Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier 50 (2000), 921-963. | Zbl | MR | Numdam
[18] - , “Selfdual Einstein metrics with torus symmetry”, Edinburgh Preprint MS-00-022 (2000), available at arXiv:math.DG/0105263. | Zbl | MR
[19] , Some topological obstructions to Bochner-Kähler metrics and their applications, J. Differential Geom. 13 (1978), 574-588. | Zbl | MR
[20] - , Kähler-Einstein metrics with SU(2) action, Math. Proc. Cambridge Philos. Soc. 115 (1994), 513-525. | Zbl | MR
[21] , Exemples de métriques de Kähler et d'Einstein autoduales sur le plan complexe, In: “Géometrie riemannienne en dimension 4”, Séminaire Arthur Besse, L. Bérard-Bergery, M. Berger C. Houzel (eds.), CEDIC/Fernand Nathan, 1981. | Zbl
[22] , Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433. | Zbl | MR | Numdam
[23] - , Local constraints on Einstein-Weyl geometries, J. reine angew. Math. 491 (1997), 183-198. | Zbl | MR
[24] , A generalization of the momentum mapping construction for quaternionic-Kähler manifolds, Comm. Math. Phys. 108 (1987), 108, 117-138. | Zbl | MR
[25] , New metrics with holonomy, Nucl. Phys. B 289 (1987), 573.
[26] - , Quaternionic Reduction and Quaternionic Orbifolds, Math. Ann. 282 (1988), 1-21. | Zbl | MR
[27] , La -forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), 495-518. | Zbl | MR
[28] , Structures de Weyl-Einstein, espaces de twisteurs et variétés de type , J. reine angew. Math. 469 (1995), 1-50. | Zbl | MR
[29] , Complex structures on compact conformal manifolds of negative type, In: “Complex Analysis and Geometry”, V. Ancona, E. Ballico and A. Silva (eds.), Marcel Dekker, New York-Basel-Hong Kong, 1996, 201-212. | Zbl | MR
[30] , Connexion canonique et structures de Weyl en géométrie conforme, Preprint (unpublished).
[31] - , Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291-304. | Zbl | MR
[32] - , Classification of Gravitational Instanton Symmetries, Comm. Math. Phys. 66 (1979), 291-310. | MR
[33] , Self-duality of Kähler surfaces, Compositio Math. 51 (1984), 265-273. | Zbl | MR | Numdam
[34] - , Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav. 2 (1985), 565-577. | Zbl | MR
[35] , Explicit construction of self-dual -manifolds, Duke Math. J. 77 (1995), 519-552. | Zbl | MR
[36] , Counter-example to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988), 591-596. | Zbl | MR
[37] C. LeBrun, private communication.
[38] , Einstein-Weyl structures in the conformal classes of LeBrun metrics, Class. Quantum Grav. 14 (1997), 2635-2645. | Zbl | MR
[39] , “Einstein equations and Cauchy-Riemann geometry”, Ph.D. Thesis, SISSA/ ISAS, Trieste, 1993.
[40] , Einstein metrics, spinning top motions and monopoles, Math. Ann. 274 (1986), 35-59. | Zbl | MR
[41] - , Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. reine angew. Math. 441 (1993), 99-113. | Zbl | MR
[42] - , Hermite-Einstein four-dimensional manifolds with symmetry, Class. Quantum Grav. 15 (1998), 1721-1735. | Zbl | MR
[43] - , Locally Kähler gravitational instantons, Acta Phys. Pol. B 14 (1983), 637-661. | MR
[44] , Special structures on four-manifolds, Riv. Mat. Univ. Parma 17 (4) (1991), 109-123. | Zbl | MR
[45] , “Riemannian geometry and holonomy groups”, Pitman Research Notes in Mathematics Series, 201, New York, 1989. | Zbl | MR
[46] , Cohomogeneity-one metrics with self-dual Weyl tensor, In “Twistor Theory”, S. Huggett (ed.), Marcel Dekker, New York (1995), 171-184. | Zbl | MR
[47] , Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum Grav. 12 (1995), 1535-1547. | Zbl | MR
[48] , The -Toda field equation and special four-dimensional metrics, In: “Geometry and Physics”, J. E. Andrsen, J. Dupont, H. Pedersen and A. Swann (eds.), Marcel Dekker, New York (1997), 307-312. | Zbl | MR
[49] - , Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. | Zbl | MR
[50] , On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc. 262 (1980), 533-542. | Zbl | MR
[51] , Some curvature prperties of complex surfaces, Ann. Mat. Pura Appl. 32 (1982), 1-18. | Zbl | MR
[52] , On the pseudo-conformal geometry of a Kähler manifolds, Math. Z. 157 (1977), 265-270. | Zbl | MR






