We consider a class of two-dimensional Ginzburg-Landau problems which are characterized by energy density concentrations on a one-dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero-energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero-energy state only if the domain is a disk and the state a vortex. Our proof is based on specific entropies which lead to a kinetic formulation, and on a careful analysis of the corresponding weak solutions by the method of characteristics.
@article{ASNSP_2002_5_1_1_187_0,
author = {Jabin, Pierre-Emmanuel and Otto, Felix and Perthame, Beno\^It},
title = {Line-energy {Ginzburg-Landau} models : zero-energy states},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {187--202},
year = {2002},
publisher = {Scuola normale superiore},
volume = {Ser. 5, 1},
number = {1},
mrnumber = {1994807},
zbl = {1072.35051},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/}
}
TY - JOUR AU - Jabin, Pierre-Emmanuel AU - Otto, Felix AU - Perthame, BenoÎt TI - Line-energy Ginzburg-Landau models : zero-energy states JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 187 EP - 202 VL - 1 IS - 1 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/ LA - en ID - ASNSP_2002_5_1_1_187_0 ER -
%0 Journal Article %A Jabin, Pierre-Emmanuel %A Otto, Felix %A Perthame, BenoÎt %T Line-energy Ginzburg-Landau models : zero-energy states %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 187-202 %V 1 %N 1 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/ %G en %F ASNSP_2002_5_1_1_187_0
Jabin, Pierre-Emmanuel; Otto, Felix; Perthame, BenoÎt. Line-energy Ginzburg-Landau models : zero-energy states. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 187-202. https://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/
[1] - - , Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | Zbl | MR
[2] - , On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields, Proc. Roy. Soc. Edinburgh 129A (1999), 1-17. | Zbl | MR
[3] - - , “Ginzburg-Landau vortices”, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 1994. | Zbl | MR
[4] , Théorèmes de trace pour les espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I 299 (1984), 834 and 300 (1985), 89. | Zbl | MR
[5] - - - , A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. | Zbl | MR
[6] - - - , Magnetic microstructures, a paradigm of multiscale problems, Proceedings of ICIAM, to appear. | Zbl
[7] , “Geometric measure theory”, Springer-Verlag, 1969. | Zbl | MR
[8] - , A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mountain J. Math. 25 (1995), n. 2, 635-684. | Zbl | MR
[9] - , Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096-1109. | Zbl | MR
[10] - , Singular perturbation and the energy of folds, J. Nonlinear Sci 10 (2000), 355-390. | Zbl | MR
[11] - , Limiting domain wall energy in micromagnetism, Comm. Pure Appl. Math. 54 (2001), 294-338. | Zbl | MR
[12] - , Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, preprint (2001). | Zbl | MR
[13] , Solutions of the Boltzmann equation, In: “Pattern and waves”, North-Holland 1986. | Zbl | MR
[14] , Strong traces for solutions to multidimensional scalar conservation laws, Arch. Rational Mech. Anal., to appear. | Zbl | MR






